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Abstract

Autonomous driving systems (ADSs) should be capable of tackling any chal-
lenge they may be faced with while driving. Before deploying such ADSs,
it is important to be confident that they are capable of handling potential
challenges in a fitting manner. But there is a near infinite set of potential
scenarios that an ADS may be faced with, making it impossible to predict
and test on all possible scenarios in advance. To this end, we propose using
Large Language Models (LLMs) to decrease the driveability of our existing
ADS scenarios, enabling the ADS to face a more challenging test environment.
By using these more challenging test scenarios, we can either (1) cause it to
fail and analyse why the ADS failed, or (2) increase our confidence in it being
able to operate in challenging scenarios. We implement a tool — LLM4DD
— for doing this and evaluate it with regard to the jerk metric. We compare
the jerk of the ADS in the ‘base’ and ‘enhanced’ versions of the scenario,
assessing if the driveability was decreased and how the ADS responded to this
more challenging operating environment. We also perform a literature review
to survey the relevant related works and evaluate how LLM4DD fits into the
state of the art. Experimental results indicate that using LLMs to decrease
driveability is a promising strategy if the range of the changes the LLM is
allowed to make is limited, whereas problems related to hallucination and
simulator crashes arise if the LLM makes excessive changes to the original
scenario. Based on the results, we present the research and outline several
strategies for improving LLM4DD in future research.



Sammendrag

Selvkjgrende biler burde veere i stand til & hanskes med enhver utfordring som
méatte komme deres vei mens de er ute og kjgrer. For man slipper selvkjgrende
biler fri ut i verden er det derfor viktig & vaere viss pa at de er i stand til &
handtere slike potensielle utfordringer. Men det er naer sagt et uendelig antall
mulige scenarier en bil kan komme til & sta ovenfor, slik at det er umulig &
forutse alle scenarier og teste pa disse i forkant. Derfor foreslar vi & anvende
store sprakmodeller for & gjgre dagens eksisterende scenarier mindre kjgrbare
enn hva de allerede er, slik at bilen far bryne seg pa stgrre utfordringer i
forkant av & mgte pa dem ute i verden. Ved & benytte disse mer komplekse
testscenariene vil vi enten kunne (1) trigge den til & feile slik at vi kan analy-
sere hva som gikk galt og leere noe nytt om bilen, eller (2) veere mer trygge
pa at bilen er i stand til & hanskes med komplekse scenarier. Pa bakgrunn av
dette implementerer vi et verktgy — LLM4DD — for & gjgre nettopp dette
og evaluerer det med hensyn pa rykk-metrikken. Vi sammenligner rykk i den
selvkjgrende bilen pa tvers av baseformen av scenariet og dets forbedrede
versjoner, og ser pa om kjgrbarheten har blitt forverret fra hvordan den var
opprinnelig og hvordan bilen forholder seg til dette mer utfordrende scenariet.
Vi har ogsa gjennomfgrt en litteraturgjennomgang og sett pa et bredt utvalg
forskning fra feltet slik at vi kan ta stilling til hvor LLM4DD passer inn i
terrenget. Eksperimentene vare indikerer at dette konseptet med & bruke
store sprakmodeller til & senke kjgrbarheten er en lovende fremgangsmate
all den tid sprakmodellen begrenses i hvor brede endringer den far lov til &
gjore. Dersom den slippes fri uten tgyler, stgter vi pa problemer knyttet til
hallusinering og at simulatoren krasjer. Basert pa resultatene presenterer vi
selve forskningen, samt en rekke videre strategier for & forbedre LLM4DD i
fremtidig arbeid.
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Chapter 1

Introduction

A problem well stated is a problem half solved.
Charles F. Kettering

This chapter presents the motivation and problem statement of the thesis,
condensing the the problem statement to a set of formalized research questions.
Finally, we present the structure of the thesis with an outline of the topics
of each chapter.

1.1 Motivation

Conventional cars are ubiquitous in society [45, p. 1]. Whether for freight
trafficking or for human transport, cars have great flexibility with their ability
to go wherever without requiring tailored infrastructure such as railway tracks.
They do, however, have one major weak point — the human driver [40,
p. 67|. For this reason, industry and academia have put forward efforts to
enhancing cars with Autonomous driving system (ADS) capabilities. By
empowering humans with autonomous vehicles, it is expected that traffic
safety and efficiency will increase along with comfort as well as enabling the
development of several other new transportation methods [29, 37, pp. 1-2,
1.

Due to the critical safety situation of operating a car, it is essential that
ADSs are thoroughly tested before they are deployed so that they are verified
to be sufficiently safe and capable of handling the situations in which they
may typically end up [57, p. 1|. But due to the complicated nature of the
typical ADS operating environment, coming up with exhaustive system test
solutions is near impossible [33, p. 52|. For this reason, we want a way of
testing the system that is capable of pushing the ADS to its limits such that
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we can evaluate its performance and see if it is capable of handling critical
scenarios [54].

Existing methods for testing ADSs typically rely on driving billions of miles,
but this incurs high cost, and is time-intensive |57, p. 1]. To address some of
these concerns, ADS simulators have been utilised. But it’s not the case that
we will know that the ADS is safe after it has driven x kilometres on roads
or y kilometres in a simulator — we will never be able to predict all possible
operating situations in advance [25, p. 1]. Therefore, we need to challenge
the ADS as much as possible when testing it. By having it take on a set of
low-driveability test scenarios in advance of real-world operations, we can be
more confident in the correctness of our ADS if it is able to complete the
scenario. By making the scenario more complex — less driveable — for the
ADS, our confidence in it will increase if it is able to complete the scenario.
And if it fails at executing the more complex scenario, we will potentially
have uncovered an underlying issue in the ADS that we did not know about
so that we can fix it before it causes harm in the real world.

Having an existing repository of ADS simulator scenarios, we wish to improve
them in such a way that they are less driveable and more challenging for the
ADS. Large Language Models (LLMs) have demonstrated great capabilities
of in-context learning and emergent abilities [10, p. 1], which begs the question
of their applicability for ADS testing. We therefore ask: Can these existing
test scenarios be made less driveable by applying LLM technology to them?

1.2 Problem description

Traditional techniques for obtaining ADS scenarios rely on (1) highly skilled
manual labour, or (2) automated generation |54, p. 1]. The prior incurs a
significant cost, and is a major limitation in obtaining a large number of good
scenarios. The latter incurs a distributional shift from the original scenarios,
which can undermine the validity of using them [54, p. 1].

Moreover, even if we were to imagine a world in which we had infinite (1) time
and (2) money, we would not be able to successfully account for every possible
scenario. There will always be more, unforeseen permutations of actors and
actions. This is a reality we need to deal with [25, p. 1]. One possible
measure of remedying with this, could be to decrease the driveability of our
existing scenarios. Decreasing the driveability is not the same as suddenly
having access to the infinite set of possible scenarios, but it is reasonable
to infer that being able to test the ADS (in a simulator) on these enhanced
low-driveability scenarios will leave it better fit for encountering other low-
driveability scenarios in the wild during operation. Having access to such
a set of less driveable scenarios will allow ADS operators to test their ADS
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that they assume to be working, and see if it still is able to handle all these
more challenging scenarios. If it is not, they will have gained a meaningful
insight into the workings of their ADS and can take action to remedy the
fault before it causes harm in the real world. And if the ADS does still work,
they can be more confident in their system.

Finally, edge cases can be a major issue for ADS adaptation. The tail problem
as it is known in the Machine learning (ML) field posits that ML tasks are
faced with a long tail of unseen cases. We can map these unseen cases, to our
unseen ADS scenarios. Because of this, an ADS can be at risk of encountering
an unseen edge case scenario during operation — something for which it might
never have been tested [54, p. 1]. By increasing the size of our test scenario
datasets, the likelihood of encountering totally unseen situations in the wild
will decrease. But using manual labour to create scenarios incurs significant
cost, and using pure ML strategies to generate brand new scenarios can lead
to their own challenges.

Summarizing the problem description, these are the formal research questions
of the thesis:

RQ1. Can Large Language Models be used to decrease the drive-
ability of Autonomous driving system simulator scenarios?

RQ2. Is it feasible to employ LLMs for obtaining unseen scenarios
for ADS testing without human intervention?
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1.3 Thesis overview
Following this Introduction chapter, the thesis is structured as follows:
e Chapter 277® introduces key concepts related to ADSs and LLMs.

e Chapter 37%" reviews the current state of research in the field and
discusses related applied works and lessons learned.

e Chapter 47 ?* details our proposed solution and its technical aspects.

e Chapter 57?** describes the experimental setup used to evaluate the
solution.

e Chapter 6 7?% presents the findings from the experiments.

e Chapter 777* analyses and contextualizes the results.

e Chapter 8 77% suggests directions for future research.

e Chapter 97?7% summarizes the main contributions and findings.

Two appendices are included: Scenario file diffs~?"" and Scenario error
messages ~ %,



Chapter 2

Background

The limits of my language mean the limits of my world.
Wittgenstein

This chapter will give an introduction to ADSs, testing, ADS testing and
LLMs. This will lay the foundation for understanding the motivation of the
project more in-depth, such that the appeal of the later solution proposal is
clearer.

2.1 Autonomous driving systems

ADSs are systems that enable automotive vehicles to drive autonomously.
Due to the typical operating scenarios of a car it is pivotal that the ADS
maintain a high safety standard.

2.1.1 ADS simulation

Due to the complexity involved in testing Autonomous driving systems (Sec-
tion 2.3.17%') simulators are typically used for this purpose [33]. While
the same points about not being able to test all possible scenarios do remain
true for simulator-based testing due to the sheer number of factors, using a
simulator allows for far greater testing at far lower cost due to the minimal
overhead of (1) generating, (2) running, and (3) evaluating the outcome of
test cases.

Furthermore, simulators allow for greater flexibility in determining the test
scenarios due to not being confined by the physical world that is available
to the scientist that wishes to perform the testing. Using a simulator, a
Europe-based scientist can test their ADS for North American conditions, or



CHAPTER 2. BACKGROUND 6

vice-versa.

Overview of ADS simulators

Due to the appeal of running ADS simulation, several contenders exist on
the market, including several Free and open source (FOSS) options.

Utilising FOSS simulators allow for reviewing their code underlying code,
which can serve to better explain why the ADS does what it does. It may
also allow for modifying the code that is used for experimentation, to better
fit the specific needs of the scientist at work.

That said, let us review some FOSS ADS simulators:

Carla is a widely used ADS simulator [13]. It is implemented using the game
engine UnrealEngine [14| and allows for running test cases under various
scenarios and collecting their results. Carla is fully open source and is under
active development. It has been used in projects similar projects such as
KITTI-Carla [11] and AutoSceneGen [1].

LGSVL is a deprecated simulator from LG [41]. It was used in projects
such as DeepScenario [33|. It allowed for running various maps with various
vehicles and tracking their data. It was also capable of generating HD maps .
DeepScenario is a project similar to this, concerned with testing Autonomous
driving systems. Further details about it in are located in Related work 7?2

AirSim is Microsoft’s offering [43]. It has, like LGSVL, been deprecated. It
is also built using UnrealEngine. Unlike the other simulators we have seen,
this also focused on autonomous vehicles outside of only cars, such as drones.

Concepts of ADS simulation

Ulbrich et al. draw up an outline for the terms scene, situation, and scenario,
that are all concepts widely used in ADS simulation testing.

scene is a term that is used in different manners in various articles [48, p. 982],
but Ulbrich et al. propose standardising the definition on a scene describing a
snapshot of the environment including the scenery and dynamic elements, as
well as as all actors’ and observers’ self-representations, and the relationships
among those entities [48, p. 983].

situation is, like scene, employed in various fashions. Ulbrich et al. give a
background detailing its usage ranging from "the entirety of circumstances,
which are to be considered by a robot for its selection of an appropriate beha-

! hitps://github.com/Igsvl/simulator?tab=readme-ov-file#introduction
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viour pattern in a particular moment’?, in Wershofen and Graefe [52, p. 3]
to Schmidt, Hofmann and Bouzouraa introducing a distinction between the
true world in a formal sense, and that being the ground truth upon which a
situation is described [42, p. 892.

Ulbrich et al. propose to standardise on the definition of a situation being
the entirety of circumstances, which are to be considered for the selection of
an appropriate behaviour pattern at a particular point of time [48, p. 985].

scenario refers to ’the temporal development between several scenes in a se-
quence of scenes’[48, p. 986]. We note how the definition a a scenario utilises
that of a scene. Furthermore, Ulbrich et al. hold it to be the case that
‘every scenario starts with an initial scene. Actions € events as well as goals
& wvalues may be specified to characterize this temporal development in a
scenario’ [48, p. 986], clarifying the distinction between a scenario and a
scene.

Lastly they posit that a scenario spans a certain amount of time, whereas a
scene has no such temporal aspect to it.

When running a simulation, we refer to the autonomous vehicle that is being
simulated as the ego vehicle |17].

ADS scenario formats

OpenSCENARIOQ is a standard developed by the Association for Automation
and Measurement Systems (ASAM), which is dedicated to the description of
dynamic scenarios |7, p. 651]. Under this format, only the dynamic content
of the scenario is recorded in the file. The static content is kept in other
formats such as OpenDRIVER and OpenCRG [7, p. 652|. The simulator
Carla (outlined in Section 2.1.17?) supports this standard |7, p. 652].

Another widely popular scenario format is CommonRoad |31, p. 4941], first
proposed in 2017 [2]. There are tools such as those proposed by Lin, Ratzel
and Althoff that allows for converting OpenSCENARIO scenarios to the
CommonRoad format [31, p. 4941].

2.1.2 The concept of driveability

Driveability is a high-level estimator of the overall driving condition of an
ADS, derived from several lower-level sources [19, p. 3140]. It can be used
to refer to various aspects of a scene. Guo, Kurup and Shah discuss the
concept further, using the scene definition of Ulbrich et al. as outlined in
Section 2.1.1 7% they describe how driveability can refer both to (1) road

“The translation from German is borrowed from Ulbrich et al., [48, p. 984]
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conditions, and (2) human driver performance. Guo, Kurup and Shah go on
to give an overview of how driveability can be used to refer to a (3) driveability
map which divides a map into cells indicating where the ADS expects that it
will be able to go, and (4) object driveability, which refers to the classification
of physical objects in the environment that the ADS expects that it can run
over without causing damage to the ego vehicle |19, pp. 3135-3136].

The main method for assessing the driveability of a scene comes form assessing
the environment of the scene. Factors such as (1) weather, (2) traffic flow,
(3) road condition, and (4) obstacles all play into this. The ADS infers
information from observation [19, p. 3136].

They continue to give an overview of various driveability factors and their
associated difficulties, using a a split between explicit and implicit factors.

Ezxplicit driveability factors will typically include factors such as Extreme
weather such as (1) fog, (2) heavy rain, (3) snow, all serving to impair road
visibility and causing increased difficulties for vision-based tasks such as road
detection and object tracking [19, pp. 3136-3137|. Illumination also poses
various challenges for typical ADS tasks as a typical ADS will be required to
operate in a plethora of scenes with varying degrees of illumination depending
on factors such as time of day and location (e.g. if the ADS is operation in
a dimly lit tunnel) [19, p. 3137|. The authors highlight how low illumination
may serve as an advantage for the ADS as this allows for using the head lights
of other vehicles as a feature for detecting them, whereas it make pedestrian
detection significantly more challenging [19, p. 3137|. Road geometry is
another external factor, satisfying our natural intuition that intersections and
roundabouts are more difficult to drive through than straight highways [19,
p. 3137].

Implicit driveability factors consist of behaviours and intent of other road
users interacting with the autonomous car [19, p. 3138|. This includes the
actions of other vehicles such as their (1) overtaking, (2) lane changing,
(3) rear-ending, (4) speeding, and (5) failure to obey traffic laws. Guo, Kurup
and Shah call these factors vehicle behaviours [19, p. 3138]. Furthermore,
pedestrian behaviours are also taken into account, noting how pedestrians
can sometimes (6) cross the road, (7) be inattentive, or (8) fail to comply
with the traffic law [19, p. 3138]. They go on to describe the driver beha-
viour of other drivers pointing out how (9) distraction, and (10) drowsiness
can be factors that cause accidents even for ADS-enhanced vehicles due to
the other, manual, cars interfering with their operation [19, pp. 3138-3139).
Lastly motorcyclist/bicyclist behaviours cause their own source of implicit
driveability factors: The models and methods developed for analysing the
group’s behaviour are far more limited than other groups of road users [19,
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p. 3139]. Guo, Kurup and Shah theorise that this comes down to the lack
of available datasets that capture and label the trajectories and behaviours
of motorcyclists and bicyclists [19, p. 3139, causing potential issues for any
ADS that wishes to operate in a shared traffic environment with this group.

2.2 Testing

We need to establish some basic testing concepts:

Pre- and post-conditions — When running test cases, the concept of
Pre-conditions refers to certain properties that obtain before running a given
test case. E.g that the ADS ego vehicle is stationary.

In many ways mirroring pre-conditions, post-conditions refers to the prop-
erties that obtain after having ran a test. E.g. that the ego vehicle will be
moving after having performed the test.

Test coverage refers to the what degree the entire system is being tested.
The concept can be used to describe both hardware and software test cov-
erage [35, p. 187]. Malaiya et al. posit that hardware-based test coverage is
measured in terms of the number of possible faults covered, whereas software-
based test coverage is measured in terms of the amount of structural or
data-flow units that have been exercised 35, p. 187|. A test case that exer-
cised every single code line of the system would by definition have perfect
test coverage.

2.3 ADS testing

This section focuses on presenting an outline of the concept of driveability,
and then the proceeding section will delve into further detail concerning
aspects relating specifically to the testing of ADSs.

Testing is essential for assuring ADS operative safety |20, p. 163]. Several
methods for ADS testing exist, all testing various aspects of the ADS. An
ADS typically exists of several modules, all working together and handling
different aspect of the ADS. In the context of this project, the module we
target is the motion planner — the part of the ADS that is responsible for
‘driving’ the car. A common way to test the motion planner is to use simulator
based testing [33, p. 1].

Huang et al. further outline several typical architectures for ADS testing,
drawing on traditional software testing traditions outlining how software
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testing can be used alongside more specialized ADS testing techniques such
as simulation testing and X-in-the-loop testing [20, pp. 163-164].

2.3.1 The complexities of ADS testing

As we have seen, ADSs can perform several tasks, in several environments.
As such, there are several relevant factors for testing them. It is not feasible
to test all potential variations of all potential environments in the real world,
meaning that the test coverage® typically will be low.

Some of the factors that complicate ADS operations are (1) timing, (2) se-
quence of events, and (3) parameter settings such as the different speeds of
various vehicles and other actors.

Park, Yang and Lim posit that the concept of complexity exists everywhere, but
there is no agreement on one for driving situations |38, p. 1182|. Therefore
they introduce their own concept of Driving situation complexity (DSC),
which serves to give a metric of a the complexity of a given driving situation.
Their DSC is defined as the output of a mathematical formula taking into
account the perplexity and standard deviation of several control variables M
representing the surrounding vehicle’s behaviour [38, p. 1182]. Their formula
also takes into account the ratio of V2X-capable vehicles [38, p. 1182], i.e.
the vehicles that are connected and capable of communicating 50, p. 1].

2.3.2 ADS testing metrics

When evaluating ADS testing, several metrics can be used. What metric to
use will depend on what the relevant test is measuring.

Building on what we have learnt about driveability (Section 2.1.27%7), we
take after Guo, Kurup and Shah and review three metrics for quantifying
driveability: (1) scene driveability, (2) collision-based risk, and (3) behaviour-
based risk. Finally, we also investigate the metric (4) jerk.

Scene driveability refers to how easy a scene is for an ADS to navigate, and the
scene driveability score refers to how likely the Autonomous driving system is
to fail at traversing the scene [19, p. 3140|. It is typically found through and
end-to-end approach. Note how this is a metric for scenes, without taking
into account the performance of any specific ADS.

Collision-based risk comes in two kinds - (1) binary risk indicator, and
(2) probabilistic risk indicator. Guo, Kurup and Shah posit that the prior,
binary metric, indicates whether a collision will happen in the near future

3See section 2.2.
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in a binary ‘either-or’ sense, whereas the latter yields a probability calcu-
lated based on current states, event, choice of hypothesis, future states and
damage [19, p. 3140].

Behaviour-based risk estimation also represents a binary classification prob-
lem wherein nominal behaviours are learnt from data, and then dangerous
behaviours are detected on that. This requires a definition of ‘nominal be-
haviour’, which is typically defined on on acceptable speeds, traffic roles,
location semantics, weather conditions and/or the level of fatigue of the
driver [19, p. 3140]. Furthermore Guo, Kurup and Shah describe how this
metric also allows more than one ADS to be labelled as ‘conflicting’ or ‘not
conflicting’ [19, p. 3140], representing a ruling on their compatibility. Fi-
nally, they note how behaviour-based risk assessment typically focuses on
driver behaviours, not taking into account other actors in the scene such as
pedestrians or cyclists.

Furthermore, jerk is a metric that renders the change of vehicle accelera-
tion with respect to time. It has been used been used as a measure of the
smoothness or abruptness of a movement in many domains such as the tra-
jectory planning of the human arm and industrial robots [16, p. 126]. Jerk
has also been shown to relate to a driver’s physiological feelings of ride com-
fort [16, p. 126], giving it a clear relation to our previously stated definition
of driveability. Feng et al. go on to posit that a goal of driving should be to
minimize the jerk, as it both is both (1) linked to comfort, and (2) detection
of safety-critical events [16, p. 126].

2.4 Large language models (LLMs)

Large Language Models (LLMs) are Machine learning (ML)-powered statist-
ical transformer-based language models that typically contain several hundred
billion parameters and are trained on massive text data [56, p. 4|. Base lan-
guage models, as the name implies, model language. They are statistical
models and as such, their output is not deterministic.

A Large Language Model is a neural network trained on big data [56, p. 3].
They expand on the older statistical language models by training on more
data. This gives rise to emerging abilities such as in context learning [56,
p. 3] (Emergent abilities 7?*?). These older statistical models are also neural
networks, but they were impractical to train on large amounts of data. It
was not until the seminal paper ATTENTION IS ALL YOU NEED [49] that
a Google team headed by Vaswani et al. showed how neural networks can
be trained in parallel using their new attention mechanism. This allowed for
using amounts of data that was not technologically practical up until that
point, opening the door for later advancements such as ChatGPT [56, p. 9]
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The importance of training data

As a consequence of LLMs being statistical models of a certain input data |56,
p. 1], what data the model is trained on is of great importance for the
capabilities of the model [56, p. 6]. Zhao et al. give an overview of various
LLMs and what kinds of corpora? they have been trained on [56, pp. 11-14].

The training data will provide the model with its base understanding of the
world, and as such it will dictate (1) what it ‘knows’, and (2) how we should
interact with it. E.g., if we want to solve problems related to software code,
we should employ a model that has been trained on software code related
topics so that the probability of it predicting correct tokens will be higher.
If it has not seen any code during its training it would not have any base
‘knowledge’ for solving our problem, and its output would be bad. The LLM
would however have no way of knowing if its output would be right or wrong,
and we could say that it would have hallucinated. See General challenges
with LLMs~?* for further information about hallucination.

2.4.1 Emergent abilities

Wei et al. outline how emergent abilities appear when scaling up language
models [51, p. 1]. They define emergent ability to refer to abilities that are
not present in smaller models, but present in the larger ones|51, p. 1], building
on physicist Anderson stating that Emergence is when quantitative changes
in a system result in qualitative changes in behaviour. [51, p. 2.

Furthermore, they discuss how few-shot prompting typically can achieve far
superior results for harvesting LLM emergent abilities, whereas one-shot
prompting can perform worse than randomized results [51, pp. 3-4].

They continue outlining several approaches for achieving augmented prompt-
ing strategies, underlining how (1) multi-step reasoning (2) instruction fol-
lowing (3) program execution, and (4) model calibration all serve as possible
ways of increasing LLM performance [51, p. 5].

2.4.2 Intelligence in LLMs

There are three theories on machine intelligence, each serving to explain
how they ‘think’: (1) stochastic parrot (2) Sapir-Whorf hypothesis, and
(3) conceptual blending.

4A corpus (pl. corpora) refers to a document collection.
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Stochastic parrot

Bender et al. outline how LLMs can fool humans as they are trained on ever
larger amounts of parameters and data, appearing to be in possession of an
intelligence [4, pp. 610-611].

This anticipates the phenomenon of hallucination (Section 2.4.4 7?*%).

Sapir-Whorf hypothesis

The Sapir-Whorf hypothesis posits that The structure of anyone’s native
language strongly influences or fully determines the world-view he will acquire
as he learns the language. |5, p. 128|.

We note how this maps to our LLMs, indicating that they will only ever be
able to ‘know’ the data on which they have come into contact with.

Or: Language defines the possible room for thought.

Conceptual blending

Conceptual blending is a theory on intelligence. It refers to the basic mental
operation that leads to new meaning or insight that occurs when one identifies
a match between to input mental spaces, to project selectively from those
inputs into a new ‘blended’ mental space [15, pp. 57-58].

This phenomenon explains how we are able to imagine phenomena that logic-
ally should not exist such as land yacht (Land yacht conceptual blend ~?-**)

We note how this is how LLMs operate when processing vectorized linguistic
data.

2.4.3 Utilising LLMs — Prompt engineering

A typical way of interacting with LLMs is prompting [56, p. 44]. You prompt
the model to solve various tasks. As we saw in Emergent abilities ”?*?, the
level of performance you are able to extract from your Large Language Model
can depend a great deal on how you interact with it. The process of manually
creating a suitable prompt is called prompt engineering |56, p. 44]. Zhao et al.
outline three principal prompting approaches:

In-context learning (ICL) is a representative prompting method that formu-
lates the task description and/or demonstrations in natural language text [56,
p. 44]. It is based on tuning-free prompting and it, as the name implies, never
tunes the parameters of the LLM [32, p. 15]. One the one hand, this allows

®Diagram borrowed from Fauconnier and Turner, [15, p. 67].
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Figure 2.1: The conceptual blend of a land yacht®

for efficiency, but on the other hand, heavy engineering is typically required
to achieve high accuracy, meaning you must provide the LLM with several
answered prompts [32, p. 16]. In layman’s terms, ICL entails including
examples of the process you want the model to perform when prompting it.

Chain-of-Thought (CoT) prompting is proposed to enhance In-context learn-
ing by involving a series of intermediate reasoning steps in prompts [56,
pp. 44, 52|. The basic concept of CoT prompting, is including an actual
Chain-of-Thought inside the prompt that shows the way form the input to
the output [56, p. 52]. Zhao et al. note that the same effect can be achieved by
including simple instructions like ‘Let’s think step by step’ and other similar
‘magic prompts’ in the prompt to the LLM, making CoT prompting easy to
use [56, p. 52].

Planning is proposed for solving complex tasks, which first breaks them down
into smaller sub-tasks and then generates a plan of action to solve the sub-
tasks one by one [56, pp. 44, 54]. The plans are being generated by the
LLM itself upon prompting it, and there is a distinction between text-based
and code-based approaches. Text-based approaches utilise natural language,
whereas code-based approaches utilise executable computer code [56, pp. 54—

55].
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2.4.4 General challenges with LLMs

We have seen that LLMs demonstrate promising abilities (Emergent abilities 7 **)
But they have nevertheless certain issues attached to them that we need to
be aware of.

Hallucination

As we saw in Section 2.4.27? ' LLMs are prone to bullshitting. They have
no intuition of, or concern with the truth. They only ever yield whatever
response is the most probable under their BEAM SEARCH algorithm being
applied on their training data.

Environmental concerns

A University of Rhode Island study on the environmental impact of LLMs
have shown that they require wast amount of energy and water [22]. They also
found that the different LLMs may differ greatly in their energy consumption,
highlighting that that certain LLMs may consume more than 70 times more
energy than others [22].

Another study by Tomlinson et al. focusing specifically on carbon emissions
did however find that these emissions significantly lower for LLMs than hu-
mans for specific tasks such as text and image generation, ranging from 130
to 2900 times less Co2 emitted depending on the task [47, p. 1].

Li et al. surveyed the water consumption of LLMs, finding that training the
LLM GPT-3 could evaporate as much as 700000 litres of clean freshwa-
ter |28, p. 1]. Furthermore they review the trends of current Al adoption and
project that the water consumption of Al could reach levels as high as 4.2 -
6.6 billion cubic metres by 2027, which is comparable to 4 - 6 Denmark’s, or
half of the United Kingdom [28, p. 1]. Recent research indicates that serving
LLMs currently account for more emissions than training them [12, p. 37].

Efforts to achieve greener LLMs have been proposed by Li et al., while
recognizing the trade-off between ecological sustainability and high-quality
outputs [27, p. 21799|.

2.4.5 The different kinds of LLMs

There are several available LLMs, some of which are open source, and some
proprietary. Open source LLMs afford greater insight into their composition
and underlying training data, whereas proprietary models appear more like
black boxes. Some popular model families include the GPTs, Gemini, Llama,
Claude, Mistral, and DeepSeek.
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The LLMs differ primarily in their (1) parameters, and (2) training data. As
we saw above, all typical LLMs utilise a transformer-based neural network.
But due to their various different properties, different models can behave
differently for different tasks regardless of their similar architecture.

What they all share is their ability to perform inference, meaning that they
predict output tokens given some input tokens (see Section 2.4.2 7#1%),

2.5 Existing LLM applications for ADS

Cui et al. give a broad overview of some of the ways LLMs have been applied
for ADSs, highlighting some of the opportunities and potential weaknesses of
LLM applications for ADS purposes. One of the ways LLMs can be applied,
is for adjusting the driving mode, or aiding in the decision-making process |10,
p. 1]. Cui et al. delve further into these aspects in their other work ‘Drive As
You Speak: Enabling Human-Like Interaction With Large Language Mod-
els in Autonomous Vehicles’, providing a framework for integrating Large
Language Model’s (1) natural language capabilities, (2) contextual under-
standing, (3) specialized tool usage, (4) synergizing reasoning, and (5) acting
with various modules of the ADS [9, p. 1].

This will be reviewed in greater detail, along with other such projects in
Related work and literature review ~?*7,



Chapter 3

Related work and literature
review

Learn from the mistakes of others. You can’t live long enough to
make them all yourself.

Eleanor Roosevelt

This chapter surveys several related works and does a literature review. It
contains a selection of works that are typically related to applying LLMs
specifically or ML more generally to ADS simulator scenarios.

3.1 Literature review

This section surveys the current state of the research field with a theoretical
perspective. Applied pieces of work are saved for later, to be surveyed in the
latter part of the chapter.

3.1.1 Survey of LLM applications in scenario-based ADS test-
ing

Zhao et al. give an extensive overview of some of the various ways that LLMs
have been applied to scenario based testing of Autonomous driving systems.
The authors classify the various research efforts based on (1) how they have
employed the LLM, and (2) to what end [57]. Their survey is continually
updated, the last update having been made 2 months before the time of
writing!. This entails a certain overlap with some of the works we review in
Related work 7?8,

'T.e. as of September 17th 2025, the last update to their GitHub repo was on July 23rd,
2025. The paper on Arxiv was last updated May 22nd 2025.
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Not deterred by this, let us delve into the survey: They start by highlighting
the trend between the number of LLM surveys, and ADS surveys — while
the trend was increasing from 2020-23, there was an explosion in 2024, with
about 200 works concerning applying LLMs for Autonomous driving system
purposes being published [57, p. 1, figure (b)]. Furthermore, the number of
ADS studies has remained steady over the last 4 years, whereas the number of
LLM studies has exploded in popularity [57, p. 1, figure (a)]. This indicates
that a significant amount of the scientific effort around ADSs the last year,
has been concerned with utilising LLMs.

The article summarizes the field, pulling together various surveys of the
related subfields. Those being (1) LLM surveys, (2) surveys of scenario-
based testing, (3) general cases of LLMs for ADSs, and finally (4) a broader
review of surveys of LLMs being applied for miscellaneous domains, for each
highlighting their specialized foci [57, p. 2].

3.1.2 LLM4AD

LLM4AD is a paper that gives a broad overview of LLMs for Autonomous
driving system. It touches on several of the various ADS applications where
LLMs are relevant such as (1) language interaction, (2) contextual under-
standing, (3) zero-shot and few shot planning allowing LLMs to perform
tasks they weren’t trained on, helping with handling edge cases (4) continu-
ous learning and personalization, and finally (5) interpretability and trust
[10, p. 2]. Furthermore, the authors also propose a comprehensive benchmark
for evaluating the instruction-following abilities of an LLM based system in
ADS simulation [10, p. 1].

3.2 Related work

Having obtained an overview of the current state of the literature, we proceed
to surveying several pieces of applied works. Here, they are categorized
broadly with regard to what they do and how the do it.

There is some overlap between some of the works and several of the categories.
A work gets allocated to the category in which that fits the best with regard
to the focus of the contribution of the work.

3.2.1 ADS scenario generation

The following works relate to generating ADS test scenarios using traditional
ML techniques.
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Dataset and toolset — DeepScenario

DeepScenario is both a dataset and a toolset aimed at Autonomous driving
system testing [33]. The principal value proposition of this work lies in re-
cognizing the fact that (1) there are an infinite number of possible driving
scenarios, and (2) generating critical driving scenarios is very costly with
regard to time costs and computational resources [33, p. 52|. The authors
therefore propose an open driving scenario of more than 30000 driving scen-
arios focusing on ADS testing [33, p. 52|. The project utilises traditional
machine learning methodologies, having been performed prior to the broad
adaptation of LLMs.

Its scenarios are intended for the simulator SVL by LG (Section 2.1.17#°).

Test case specification language — RTCM

RTCM is a ADS testing framework that allows the user to utilise natural
language for synthesizing test cases. The authors propose a domain-specific
language — called RTCM, after RESTRICTED TEST CASE MODELLING
— for specifying test cases. It is based on natural language and composed of
(1) an easy-to-use template, (2) a set of restriction rules, and (3) keywords
[55, p. 397]. Furthermore, they also propose a tool to take this RTCM
source code as input and generating either (1) manual, or (2) automatically
executable test cases [55, p. 397|. The proposed tools were evaluated in
experiments with industry partners, successfully generating executable test
cases [55, p. 397].

Generating crash scenarios — DeepCollision

Lu et al. utilise Reinforcement learning (RL) for ADS testing, with the goal
of getting the ADS to collide. They used collision probability for the loss
function of the Reinforcement learning algorithm [34, p. 384|. Their experi-
ments included training 4 DeepCollision models, then using (1) random, and
(2) greedy models for generating a baseline to compare their models with.
The results showed that DeepCollision demonstrated significantly better ef-
fectiveness in obtaining collisions than the baselines. While not specifically
focused on testing, we recognize that their work is thematically similar to our
project.
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3.2.2 Utilising LLMs on ADS scenarios

The remaining works all relate to utilising LLMs for various purposes related
to ADS scenarios.

AutoSceneGen

AutoSceneGen is a framework for ADS testing using LLMs, focusing on
the motion planning of Autonomous driving system [1, p. 14539]. Aiersilan
highlights how LLMs provide opportunities for efficiently evaluating ADS in
a cost-effective manner [1, pp. 14539-14540]. They generate a substantial
set of synthetic scenarios and experiment with using (1) only synthetic data,
(2) only real-world data, and (3) a combination of the 2 as training data.
They find that motion planners trained with their synthetic data significantly
outperforms those trained solely on real-world data |1, p. 14539].

LLM-Driven testing of ADS

Petrovic et al. worked on using LLMs to for automated test generation based
on free-form textual descriptions in the area of automotive [39, p. 173]. They
propose a prototype for this purpose and evaluate their proposal for ADS
driving feature scenarios in Carla. They used the LLMs GPT-4 and Llama3,
finding GPT-4 to outperform Llamad for the stated purpose. Their findings
include this LLM-powered test methodology to be more than 10 times faster
than traditional methodologies while reducing cognitive load [39, p. 173].

Requirements All You Need?

Lebioda et al. provide an overview of LLMs for ADS in their recent pre-
print Are requirements really all you need? A case study of LLM-driven con-
figuration code generation for automotive simulations?, focusing on LLM’s
abilities for translating abstract requirements extracted from automotive
standards and documents into configuration for Carla (Section 2.1.17?°)
simulations [26]. Their experiments include employing the autonomous emer-
gency braking system and the sensors of the ADS. Furthermore, they split
the requirements into 3 categories: (1) vehicle descriptions, (2) test case
pre-conditions, and (3) test case post-conditions [26]. The preconditions
they used included (1) agent placement, (2) desired agent behaviour, and
(3) weather conditions amongst others, whereas their postconditions reflected
the desired outcomes of the tests, primarily related to the vehicle’s tele-
metry [26].

2This was submitted to Arxiv on 2025-05-19.



21 3.2. RELATED WORK

Language Conditioned Traffic Generation

Tan et al. look into using LLMs to generate specific traffic scenarios. They
identify the importance of being able to use simulators to test ADSs, and
highlight how test scenarios are expensive to obtain [44, p. 1]. To this end,
they propose a tool — LTCGEN which employs the strengths of LLMs to
match a natural language query with a fitting underlying map?3, and populates
this with a (1) initial traffic distribution, and (2) the dynamics of all the
vehicles involved in the scene. Something to note is that they generate their
scenarios, without initially taking the ego wvehicle into account. The ego
vehicle of the scene is simply determined as the vehicle that is in the centre
of the first frame [44, p. 3].

Scenario engineer GPT

Li et al. outline a framework for utilising the LLM-backed ChatGPT in order
to generate scenarios. They propose SeGPT — a scenario generation frame-
work that they found to yield significant progress in the domain of scenario
generation [30, p. 4422|. They posit that their prompt engineering ensures
that the generated scenarios are authentically diverse and challenging [30,
p. 4423|. The focus is primarily on trajectory scenarios [30, pp. 4422-4423|.

Note how they explicitly mention scenario generation. Our approach for
this project has a different angle, with the focus being on modifying ezisting
scenarios. More on this in LLM4DD implementation ~?2*, The difference
between generating a ‘brand new’ scenario with a model trained on existing
scenarios, and modifying an existing scenario seems like a matter of granu-
larity. These are very similar concepts, only that the enhanced scenario will
have more common DNA whereas the other ‘new’ scenario will consist of a
broader range of DNA from its various underlying scenario corpora.

LLM driven scenario generation

Chang et al. also look into using Large Language Models to generate
ADS scenarios. They recognize several of the challenges we outline in Sec-
tion 1.27%2. In their 2024 paper, they propose LLMSCENARIO, which is an
LLM-backed framework for both (1) scenario generation, and (2) evaluation
feedback tuning [6, p. 6581].

They analyse scenarios in order to provide the LLM with a minimum baseline
scenario description, and propose score functions based on both (1) reality
and (2) rarity. Their prompting is based on Chain-of-Thought (CoT) and a
posteriori empirical experience. Lastly, they tested several Large Language

3Map as in a world in which a scenario can take place.
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Models for their experiments. Their results were positive, indicating effect-
iveness for scenario engineering in Industry 5.0 [6, p. 6581].

Chat2Scenario

Zhao et al. propose a method for utilising LLMs to retrieve ADS scenarios
given a natural language query. Their framework synthesizes scenarios from
naturalistic? driving datasets, based on observation real world human driv-
ing [58, p. 55], that it then uses as a database for retrieving the scenario that
best matches the user’s natural language query. Furthermore, they employ
traditional techniques for asserting the relevance of the retrieved scenarios,
allowing the user to specify a set of criticality metrics, of which a certain
threshold must be reached amongst the scenarios that are initially retried by
the LLM, pruning false positives. As a measure to increase the usability of
their framework, they also provide a web-app with an intuitive GUI for both
(1) operating the tool, and (2) visualizing the scenarios [58, p. 560].

In order to allow the LLM to determine whether a scenario is relevant under
the provided query, they put forward a method for classifying the various
scenarios using traditional ML techniques. This classification focuses primar-
ily on highway scenarios and the activities of other actors in relation to the
ego vehicle [58, pp. 561-562].

The project’s prompts are ‘informed’ by the 6 OpenAl guidelines from their
prompt engineering guide®, ending up with a structured prompt of 5 seg-
ments. These segments serve to guide the LLM, delineating its role as an
‘advanced Al tool for scenario analysis, specifically tasked with interpreting
driving scenario following a pre-established classification model’ [58, p. 562].
They then input the user-provided description of the scenario they wish to
retrieve. Following this, a third segment declares the format for the LLM
response, followed by a prime example of In-context learning, demonstrating
what a satisfactory fulfilment of the desired format could look like. Lastly
they instruct the LLM to Remember to analyse carefully and provide the
classification as per the structure given above |58, p. 563].

Predicting driving comfort in autonomous vehicles using road in-
formation and multi- head attention models

The 2025 article of Chen et al. [8], delves into the various aspects related to
predicting driving comfort in autonomous vehicles based on (1) available road
information, and (2) multi-head attention models. Their principal focus is on
driving comfort. To this end, they evaluate ADSs in light of the jerk metric

4Their term. The intended meaning of naturalistic is not all clear to me.
Shttps://platform.openai.com/docs/guides/prompt-engineering (URL from the paper.)
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in various situations. Furthermore, they highlight how a high complexity in
the scenarios can increase the probability of emergency breaking occurring,
which is naturally antithetical to comfort for the ADS operator and their
passengers.

In order to measure this comfort, they rely metrics calculated from data-
points from the ADS system — jerk and acceleration. This, they use in
conjunction with manual human driving evaluation scores, to compose a new
metric, the ‘driving comfort evaluation score’ (DCES) [8, p. 10].

Moreover, they use this information to propose a model — the Autonomous
driving comfort prediction (ADCP) model — for predicting driving comfort
from road information [8, p. 2.



Chapter 4

LLM4DD implementation

The only difference between a problem and a solution is that
people understand the solution.

Charles F. Kettering

This chapter will describe our proposed solution for the problem presented
in the Introduction 7?*. This implementation will serve as a testbed for the
experiments for obtaining our experiment Results 7** that we later analyse
and evaluate (Chapter 77? ).

Recall that have seen in the Introduction 7 ?* and Background ~*° that there
are several complexities involved with ADS testing, such that we typically
use simulator-based testing to aim at verifying the safety of the ADS before it
gets deployed to the real world. But then we saw further that simulator-based
testing can lead to a false sense of safety due to the ADS passing all our test
scenarios, and then there can be a hole in what they test for, so that the
ADS may actually have undiscovered faults that we haven’t caught on to.

Furthermore, we saw that LLMs have capabilities for modifying textual data
(such as e.g. scenario definitions) by natural language prompt engineering.
In Related work and literature review 7 ®*" we surveyed several projects that
aim to enhance scenario-based testing of ADSs, and we saw that some of
them employed LLMs. But no research appears to have specifically used

LLMs to decrease driveability of ADSs scenarios!.

This research gap is addressed by this thesis — we propose a novel LLM-
powered methodology for decreasing the driveability of ADS scenarios so

'The most similar work, to the author’s knowledge, is [54] - AGENTS-LLM: Augmentative
GENeration of Challenging Traffic Scenarios with an Agentic LLM Framework.
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that when the ADS is tested with the less driveable test scenarios, we can
either (1) trigger it to fail and analyse what went wrong, or (2) be more
confident in the ADS being able to operate in complex scenarios due to
passing them.

To this end, we propose LLM4DD? — a tool for (1) running a base ADS
test case, (2) enhancing the test case using LLMs, (3) running the enhanced
test case, and (4) comparing the results of the two runs. We summarize the
motivation behind using the LLM4DD tool in the following user story:

(1) I have a set of ADS test scenarios. I provide this set to LLM4DD. It
will run the entire set, and generate a baseline of my ADS performance.

(2) LLM4DD will then improve my test scenarios using LLMs to make
them less driveable, and run the enhanced versions.

(3) Lastly LLM4DD will report how the results differ from running the
base and enhanced version of a test case.

(4) This will give me insight into my ADS by reviewing what scenarios it
failed to complete. Then I can look into the cause of the error state
and uncover underlying faults in the ADS that i did not know about
beforehand. If the ADS is able to complete the less driveable scenarios,
I can be more confident in it and be more assured that it will work
properly during real-world operation.

The tool follows a natural pipeline structure. We have some base test scen-
arios that need to be run in order to get a baseline for the results, we then
have to enhance these, and run the improved versions and compare them to
their original versions. Experimenting with this tool will allow us to learn
the extent to which LLMs can be applied for decreasing driveability in ADS
test scenarios, satisfying the Problem description ~?->. The tool is implemen-
ted in an LLM- and scenario-agnostic fashion so that it is scalable to other
combinations of LLM and scenario formats than those experimented with in
this specific work to verify the feasibility of the tool.

Figure 4.1 7?* renders an example of how it can appear when executing a
test scenario on the Carla simulator. Runs like this will later be presented
in Results 7?* and then analysed in Discussion 7?*® to evaluate the value of
the LLM4DD tool.

2 ‘LLMs for decreased driveability’.



CHAPTER 4. LLM4DD IMPLEMENTATION 26

pygame window

Figure 4.1: A screenshot from executing a Carla scenario.

4.1 Architectural overview

In order to decrease the driveability of the ADS scenarios, we need 3 separate
components: (1) something to handle the LLM interfacing, (2) something
that can integrate with the ADS simulator, and finally (3) some kind of
human-facing interface to administrate the process. By compartmentalizing
what component has responsibility for what task, we reduce complexity and
increase the possibility of repurposing the modules for other possible tasks
in the future. UNIX philosophy!

For the sake of making their roles more clear, we christen the components as
follows: (1) Odin will be the module for interfacing with LLMs and performing
the enhancement. (2) Thor will take ADS scenarios, run them on a simulator
and report the results. Finally, (3) Loki will interface with the human and
start the process by determining what LLM is to be used with what prompts
with what scenarios. These components and their relationship is rendered in
Figure 4.2 7727,

All the prompts exists as a part of the Odin module. Loki will request
available prompts from Odin on behalf of the user, and the user will select
which one they want to use. Similarly, all the scenarios exist within the Thor
module and are handled by it. As for the prompt, the user requests a list
of available scenarios from the Thor module and makes a decision on which
they want to use.
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Figure 4.2: LLM4DD pipeline architecture

The programming language PYTHON is widely used for ADS simulation. It
is a high level language, allowing the user great flexibility and developer ex-
perience. For this reason, it is the de facto goto-language for ADS simulation
purposes and LLM4DD is also implemented using that language.

All code is available on the GitHub repo LLM4DD.

4.2 Component details

All the components are intended to be ran as separate containerised processes
on Docker, allowing for scaling them up to industrial scale in a Kubernetes
(K8s) setting. Docker is a piece of software that allows a piece of software to
run in a reproducible pod which allows for easy dependency management and
scaling. The motivation for using K8s technology in this project would lay
in spinning up several Odin and Thor pods, allowing for processing several
scenarios in parallel even if there is only 1 Loki client.

Let us now focus on the individual components and analyse how they solve
their given tasks and how they all fit together to make up the total LLM4DD
pipeline tool.

4.2.1 LLM interface and prompt applications — Odin

The Odin module handles all things LLM. It provides a unified API for
applying various prompts to scenarios and returning the enhanced output
resulting from having applied the prompt. We have implemented support for
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the LLMs that are available on Ollama, and Gemini. This allows for testing
with LLMs such as Mistral 7.2B, and gemini-2.5-flash.

Note that we don’t employ any traditional Natural language processing (NLP)
techniques related to e.g. tokenization or input processing — we leave this up
to the internal mechanisms of the LLMs.

In order to facilitate testing various LLMs, the module is written to be as
general as possible, exposing a simple API that can be used with all various
LLMs with minimal modification necessary. This allows for experimenting
with several LLMs that may all have different internal Application program-
ming interfaces (APIs) without having to modify the major underlying code
for specific APIs. This saves time, and prevents repetitive manual work.

Therefore, interfacing with LLMs is the principal task of the Odin module.
It offers a simple API to Loki, and then Odin itself will handle all the
complexities of making the LLM work with the provided prompt etc. As
mentioned above, the current version of the LLM4DD tool has support for
Ollama and Gemini APIs. Let us review how this has been achieved:

Gemini integration

The Gemini integration is quite straightforward, relying on Google’s own
genai Python module. The one piece of complexity to not is that it requires
that the user provides their own Gemini API key and has this set as an
environment variable with the proper name. Without this being as it should,
the script has been written to hard crash, as it would not possible for it to
complete the desired LLM enhancement regardless as long as the API key is
not present.

Ollama integration

The Ollama integration is a bit more cumbersome. This mostly comes down
to it not using any existing library modules for this specific purpose, instead
relying on using the json and requests modules to implement the desired
functionality from scratch, making it so that we need to handle network 10
and marshalling the LLM response into a fitting return buffer.

Its complexity arises principally from 2 major factors — (1) the already men-
tioned manual networking, and (2) having to parse the streamed response
Furthermore, this code expects that the user already has an Ollama installa-
tion running on their host machine. The code provides no means of setup for
this — that is an entirely external endeavour that is left up to the end user.

Similarly to how the Gemini implementation does it, this will crash if Ollama
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is not functioning properly as it would not possible for it to complete the
desired LLM enhancement regardless if Ollama is unreachable.

Prompts and their associated code

In this project, the prompts are the instruction to the LLM for applying
the enhancement to the scenario. Quite possibly the most critical piece of
code related to the experiments, outside of the base LLM integration that
allows for running prompts altogether. They need to take the base scenario
as an input and integrate it into the LLM context, such that it knows what it
shall use as its base to apply enhancements that will decrease the driveability.
For this reason, the Odin module also provides certain scenario utilities, for
facilitating prompt operations. As mentioned, the prompts need to include
the scenarios in them, so that they are accessible to the LLM. The most
interesting aspect about how we do this, is how the prompts are stored in
the system as lambda functions. This makes it so that they can take an
argument that represents the scenario and simply ezecute the function to
insert the scenario into the prompt. This is then inserted into the output
prompt. This is a very intuitive concept that might best be seen in order to
grasp it.

Listing 4.1 renders an example how the prompts are stored in the code base.
As mentioned, this is used in a such a manner that the ADS scenario is
provided as an argument and is then inserted on that which is line 4 in this
example listing. This generalization of inserting the scenarios into template
strings allows for using the same prompts for all scenarios without having to
modify the underlying code.

lambda python_carla_scenario_raw: f"""

1 - Context: We are working with a driving simulation environment for the Carla
simulator.

2 - Task: Decrease the driveability of the scenario by enhancing it with more details
and complexity.

3 - Input: {python_carla_scenario_raw}

4 - Output: An enhanced version of the scenario description with additional

details and complexity, still in Python carla scenario format.

Listing 4.1: An example prompt.

4.2.2 Carla interface and scenario utilities — Thor

The Thor module is responsible for all things related to the Carla ADS
simulator. It provides the client with several scenario-related utilities, and is
capable of executing the desired scenarios.

For the reasons we have seen in Section 2.1.1 7?°, we want to run our scenarios
on Carla. It is the best offering as it is open source, under active development
and has a feature rich Python API with a first party ‘scenario runner’ module.
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Executing ADS scenarios on Carla is quite straightforward when using Carla’s
existing Scenario Runner module’s functionality. We have made our own fork
of this in order to make it behave in a way that makes the most sense for the
LLM4DD situation?.

We record a plethora of datapoints when executing scenarios on the simulator?.
The way the Carla simulator works, one simulator run can be analysed several
times post factum. The entire scenario execution is stored in a Carla-specific
binary format. This binary file can then later be analysed, extracting various
metrics from one run. This saves time not having to run the simulator more
than necessary, and allows for reproducing the metric calculations from the
original underlying binary log file.

Certain of the Thor utilities are simple tools for asserting the liveness of
Carla, such as the get_carla_is_up function. This function will use the
Carla standard Python library and attempt to connect to the server on its
default port, i.e. 2000, as per the Carla documentation. Note that we refer to
the host as simply carla — this is possible due to the entire project running
containerised with Docker Compose. Instead of referring to the specific IP
address of the Carla server (typically localhost, if not running it externally),
the Docker system will facilitate this name translation for us.

The Thor healthcheck is used both to assert the general liveness of the pipeline
of the LLM4DD pipeline, and to verify that the simulator is available before
performing experiments. By ‘liveness’ we mean to check that all components
are running and ready to process work. Essentially checking that they haven’t
crashed. It is better to detect this illegal crash state before running experi-
ments rather than during their execution as that would cause (1) cumbersome
debugging, and (2) wasting time.

As described in the Introduction~?!, we use the jerk metric as a proxy
for ride quality and safety. It is implemented as an extension to the Carla
Scenario runner software suite. Using this, we can compare the results from
running the baseline unmodified test case and comparing it with the results
from running the LLM-enhanced version and returning to the user with
regard to driveability. Jerk is to be calculated after having executed the
scenario, utilising the Carla binary file described above.

3This fork is available on https://github.com/orjahren/scenario_runner-LLM4DD. It was mostly
used for debugging purposes and the LLM4DD tool should work just fine with the stock
version as well.

“This is again provided by the Carla software suite. A complete overview of data points is
provided in the documentation, see e.g. https://carla.readthedocs.io/en/0.9.15/adv_recorder/


https://github.com/orjahren/scenario_runner-LLM4DD
https://carla.readthedocs.io/en/0.9.15/adv_recorder/
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4.2.3 Execution tool / user oriented frontend — Loki

The final module of the LLM4DD pipeline is Loki — it is simply a tool intended
to be used by the user for operating the process. It (1) says what scenarios are
available to it (i.e. those that are eligible for being enhanced), and (2) allows
the user to select a prompt and (3) execute that prompt to the scenario of
their choosing.

The Loki module relies on the Odin and Thor modules for all essential func-
tionality, which is in line with what is to be expected as this is simply a
frontend client to reach them. For these reasons, it’s a quite simple Py-
thon script that relies on RPC to the APIs of the other components of the
pipeline.



Chapter 5

Experiment methodology

The torment of precautions often exceeds the dangers to be
avoided. It is sometimes better to abandon one’s self to destiny.

Napoléon

This chapter will describe the experimentation that has been done with the
implemented solution proposal (Chapter 4 7#**)  describing the methodolo-
gical process that was undertaken in order to obtain the Results 7®*. This
chapter lays the groundwork for presenting them succinctly with their relevant
context in Chapter 6 7% and then analysing them in Chapter 77?2,

5.1 ADS-related aspects

This section surveys ADS-related aspects from the experimentation, detailing
the experimentation related to scenarios and metrics.

5.1.1 Scenarios

We do naturally have to walk before we can run. For this reason, the tool
will initially be tested on simple test scenarios provided by people behind
the Carla simulator. When we have verified that the project is sufficiently
working for its stated purpose, we can scale up the activities to other datasets.
Several are presented in Related work 7?8, The concept of applying LLMs
to ADS scenarios is quite universal in nature and is eligible for application
for virtually all datasets.

The experimentation for developing and evaluating the LLM4DD tool fo-
cused on the scenarios Accident, CutIn, NoSignalJunctionCrossing and
FollowLeadingVehicle.

32
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5.1.2 Metrics

The goal of this project is to decrease the driveability of the scenario such
that we are able to ‘flag’ potential issues in the ADS. As ‘driveability’ is a
very broad concept (see The concept of driveability 7*7), there are several
relevant metrics and datapoints that can potentially be used.

For this project, due to its broad scope, a similarly broad metric will be used
for indicating that an experiment has yielded a meaningful result — jerk. As
outlined in ADS testing metrics 7?*°, jerk has been shown to be related to
several factors contributing to driveability.

Again owning to the broad scope, exact jerk numbers are not relevant — for
our purposes, it suffices to have a binary relation to the jerk being either
(1) more or less unchanged!, or (2) worsened. If the driveability has decreased,
we will have found a result.

Lastly, it’s worth noting that qualitative analysis by intuition from visually
inspecting the scenarios is also useful here. If the LLM has introduced an
obstacle in the course of the road where the ADS is to drive, we intuitively
know that this enhanced scenario is more complex and less drivable — which
also indicates a result.

5.2 LLM-related aspects

The last section of this chapter explores aspects related to the LLM usage in
the experiments, detailing the usage of prompts and determining what LLM
is to be used, along with some preliminary results.

5.2.1 Prompts

Prompting is our principal way of interfacing with the LLM. For this reason,
our results depend on (1) good, and (2) fitting prompts. Without this, we
won'’t get far.

We therefore propose several prompting strategies, taking after related re-
search (Related work 7?*¢).

Prompts were determined by trial and error in an iterative manner, in
conjunction with GitHub Copilot. They are all descendant of listing 5.1,
each subsequent iteration improving on the last based on what worked or
did not worked when assessing the output. Due to a technical detail of
the LLM4DD implementation (LLM interface and prompt applications —
Odin ~??"), the datatype of the prompt is a lambda function that takes the

Keep in mind that ADS motion planners are indeterministic
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raw scenario represented as a string and then inserts it into the prompt in
runtime. This is represented by the curly braces on line 3 in listing 5.1.

lambda python_carla_scenario_raw: f""'

1 - Context: We are working with a driving simulation environment for the Carla simulator.
3 2 - Task: Decrease the driveability of the scenario by enhancing it with more details and
complexity.
3 - Input: {python_carla_scenario_raw}
4 - Output: An enhanced version of the scenario description with additional

<

details and complexity, still in Python carla scenario format.
W

Listing 5.1: The first prompt.

5.2.2 Finding a suitable LLM

As we learnt in Section 2.4.5 7?** there are several LLMs. We should be able
to experiment with various different LLMs to maximize our chance of testing
with a ‘good’ LLM that goes well with our stated purpose. Due to the LLM-
agnostic implementation of the 0din module, this is quite straightforward.

The experiments were first carried out using a locally hosted 7.2B parameter
Mistral model. This model is interesting in that it has been shown to outper-
form significantly larger models across various benchmarks?. Similarly, the
Gemini model Gemini 2.5 flash running on Google’s infrastructure was
used. This is a mid-size multimodal model that supports up to 1 million
tokens, released in June of 2025, with support for thinking and long contexts>.

All data presented in the Results 7% chapter, are obtained using the Gemini
model.

5.2.3 Output of the LLM — general overview

The following reviews (1) what works well, (2) why it works, and (3) what
does not work and (4) why this is.

Depending on the prompt, our results show that it is very possible to get
reasonable-looking Python out of the LLM. One somewhat cumbersome
detail is their bent to mark the code as specific syntax, the entire LLM
response being a Markdown-formatted code block indicating both that the
output is code, and what language it is in,to the first and last line of the
output (Listing 5.2). Several leaked LLM system prompts corroborate this

behaviour?

Zhttps://ollama.com/library/mistral

3https:/deepmind.google/models/gemini/flash/

1See e.g.https://github.com/search?q=repo%3Ajujumilk3%2Fleaked-system-prompts%
20markdown&type=code.
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https://github.com/search?q=repo%3Ajujumilk3%2Fleaked-system-prompts%20markdown&type=code
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XX

python

[ scenario code ]

e

Listing 5.2: LLM-generated Python code with Markdown syntax. The
bracketed part on line 3 has been added for demonstration purposes, removing
the actual code for brevity.

Upon removing these syntactic artefacts, we can go ahead with executing the
scenario. As previously mentioned, not all enhanced scenarios immediately
work with the Carla simulator. This primarily comes down to (1) hallucina-
tion of Python code, and (2) Carla problems, along with the aforementioned
(3) markdown-formatted output.

Something worth noting is that the LLM demonstrates a promising ability
to explain back to the user how it enhanced the scenario, e.g. in the form of
bullets in a docstring of the output code (see listing 5.3).

#!/usr/bin/env python
Copyright (c) 2019-2020 Intel Corporation

This work is licensed under the terms of the MIT license.

#
#
#
# For a copy, see <https://opensource.org/licenses/MIT>.

W

Cut in scenario:

The scenario realizes a driving behavior on the highway.

The user-controlled ego vehicle is driving straight and keeping its velocity at a constant
level.

Another car is cutting just in front, coming from left or right lane.

The ego vehicle may need to brake to avoid a collision.

Enhanced scenario:

- Increased background traffic with varying speeds to create a more crowded environment.

- Challenging weather conditions (heavy rain, fog, strong winds) to reduce visibility and grip

- Nighttime setting to further decrease visibility.

- Randomization of speeds and trigger distances for increased unpredictability.
W

[...1

Listing 5.3: Head of an LLM-enhanced scenario, highlighting how the LLM
can add an explenation of how it enhanced the scenario.

5.2.4 Hallucinations in the enhanced scenarios

The LLM typically seems to be on the right track, outlining something
that sounds like a good approach to satisfying our prompt of decreasing the
driveability of the scenario. But in practice, it will often hallucinate methods
that don’t exist, or use terms and phrasing that are not valid keywords in the
Carla specification. This is in line with what was found by e.g. Aiersilan |1,
p. 14542] (See AutoSceneGen ~** in Related work).
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Non-existing methods

As mentioned, the LLM seems to have the right idea of what it can do to
achieve the stated goal. But the way that it goes about obtaining it, does
not always work. The enhanced scenario code will often call methods that
don’t exist. This leads to a runtime exception in the scenario runner when
executing the enhanced scenario.

Non-existing arguments

In a similar vein to the non-existing methods, non-existing arguments were
also shown to appear. The LLM could simply call methods that were already
being used, with additional arguments that made semantic sense, but that
were not a part of the function definition. This also causes runtime exceptions
in the scenario runner.

Illegal property keywords

Another trend we observed was the usage of various keywords that simply
don’t exist in the Carla repertoire. Where Carla would recognize the word
‘snowstorm’, the Large Language Model (LLM) could propose using the word
‘blizzard’.



Chapter 6

Results

It doesn’t matter how beautiful your theory is, it doesn’t matter
how smart you are. If it doesn’t agree with experiment, it’s wrong.

Feynman

This chapter will survey a selection of results from performing various exper-
iments (see Experiment methodology 7?-*?). This chapter will present the
results, and they will then be analysed later in Chapter 777,

See the listings in the Scenario file diffs 7?"" appendix for some demonstra-
tions of what the LLM is capable of doing to some scenarios with regard to
the syntax of scenarios. Going ahead, we first look at some general aspects
that are shared between all our experiments, before narrowing the scope and
reviewing a selection of individual scenarios, highlighting the value added by
the LLM4DD tool.

Table 6.1 renders a table of the status of executing various scenarios after
they have been processed by a Gemini LLM.

There appears to be a bug in Carla version 0.9.15" which causes the program
to hard crash when executing certain scenarios with metric recording enabled.
This has been reported to the project GitHub?, but as of 2025-10-15 it has
not been resolved. Testing shows that the same scenarios may be ran without

Which is the version employed for this project.
2By several members of the scientific community, see e.g.

e https://github.com/carla-simulator/carla/issues/9170,
e https:/github.com/carla-simulator/carla/issues/9152 and

e https://github.com/carla-simulator/carla/issues/9349
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Table 6.1: Statistics of simulator execution of LLM-enhanced scenarios, across
all prompts

Execution status Number of Scenarios

Unexpected keyword argument 8

Hard simulator crash 3
Illegal object placement 1
Non-existing import 3
No execution issues 9
Number of enhanced scenarios 24
Number of crashed scenarios 15
Failure ratio 63%

crashing when not recording, but this naturally has severe implications for
our opportunities of obtaining data from the simulation run. The ‘record’
functionality of the scenario runner is the crux of measuring the driveability
of the scenario.

Note that this is a different kind of problem from those presented in Hallu-
cinations in the enhanced scenarios 7% — this problem is relevant for base
scenarios, provided first party by the Carla simulator team. A major con-
sequence of this is that it hindered what sort of base scenarios we could
experiment with. We were naturally unable to experiment with enhancing
base scenarios that we were unable to run, as we would have no baseline to
measure against, and it is highly improbable that the scenario would magic-
ally start working after having gone through an LLM with a prompt aiming
at worsening its complexity.

6.1 Examples of enhanced scenarios

With all these generalities in mind, let us now narrow the scope and evaluate
some tangible scenarios. We will contrast the baseline, original, scenarios,
with some that have been enhanced by a LLM, focusing on what changes the
LLM proposes and how they affect the driveability of the scenario.

The base scenarios used for these experiments come from the official Carla
scenario runner software library3, but the concept is applicable to scenarios of
other repositories as well. Several alternative options are presented in Related
work 7P, Due to the aforementioned challenges with getting scenarios to
run on the Carla simulator, these basic scenarios are used for the purposes of

3https://github.com/carla-simulator/scenario_runner
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the thesis experiments, serving as a validation of the concept and laying the
groundwork for adapting the method to other scenario sources in the future.

As mentioned in section 4.2.2, Carla scenario executions are saved to binary
log files. But these files are huge, typically being several hundred megabytes
depending on the duration of the scenario execution?. As such, publishing
all our raw files is not feasibled.

6.1.1 Base scenario: Follow vehicle

The ‘follow vehicle’ is the most basic kind of scenario out there. It simply
consists of one ego vehicle, and one external vehicle. Our ego is to follow the
other vehicle along a straight road in a residential area.

pygame window

o

v 7///'/ /}///, “
- f’{/'/"

Press 'H' or '?' for help.

Figure 6.1: A screenshot of the base ‘follow’ scenario where our ego chases
an external actor.

Figure 6.1 7?* gives a visual representation of the initial state of the scenario.
Due to the low complexity of this scenario, we won’t gain any substantial
insight into how well our ADS works, if it is to execute the scenario properly.
We want to make it more complex in order to provide our ADS with a more
challenging environment in which it is more likely to fail.

To this end, we employ an LLM to decrease the driveability.

4Keep in mind that they record data for all actors in the scenario over time.
®A selection is available in the LLM4DD GitHub repo.
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If we prompt the LLM with a broad allowance of ways of decreasing the
driveability such as the prompt demonstrated in listing 6.1, we run into
issues with excessive hallucination. The LLM wants to import a class that
simply does not exist in the Carla API. See listing B.1 in the Scenario error
messages ~?* appendix for the complete error message.

"no_explanation": lambda python_carla_scenario_raw: f"""
1 - Context: You are a tool for decreasing the driveability of scenarios in the driving
simulator Carla.
2 - Task: Decrease the driveability of the scenario by enhancing it with more details and
complexity.
3 - Input, the Python specification for the scenario: {python_carla_scenario_raw}
4 - Output: An enhanced version of the scenario with additional details and

complexity, still in Python carla scenario format. Only ever output the code,

without any additional text or explanation.
wan
s

Listing 6.1: The most basic prompt first used in the experiments. This leads
to excessive halluciantion.

Due to not being able to run, there is not much to show for here. The prompt
was revised to discourage such hallucinations in order to obtain meaningful
results. In line with the Experiment methodology 7?3, we iterate on the
prompt. We first tell the LLM to strictly adhere to the Carla APL

The complete output resulting from this prompt is shown in listing A.1 in
the appendix. Keep in mind that LLMs by nature are not deterministic,
and as such it is probable that trying to reproduce this output might not be
straight-forward.

"no_explanation_strict": lambda python_carla_scenario_raw: f"""
1 - Context: You are a tool for decreasing the driveability of scenarios in the driving
simulator Carla.
2 - Task: Decrease the driveability of the scenario by enhancing it with more details and
complexity.
3 - Input, the Python specification for the scenario: {python_carla_scenario_raw}
4 - Output: An enhanced version of the scenario with additional details and

complexity, still in Python carla scenario format. Only ever output the code,
without any additional text or explanation. It is important that you only
use methods and classes that are part of the official Carla API, and do not

invent new ones or use non-existent ones.
wun

Listing 6.2: A slightly more advanced prompt instructing the LLM to strictly
adhere to the Carla API.

As shown in listing 6.2, we iterate by instructing the LLM to make sure to
strictly adhere to the Carla API. This yields a similar problem where the
LLM attempts to make an import that does not exist. This diff is presented
in listing A.2.
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Iterating further, we realize that we must walk before we can run. We
therefore instruct the LLM to make as few changes as possible. The intuition
being that if it does this and relies on the options that are already present in
the file, it is more plausible that we will get a runnable output. This prompt
is presented in listing 6.3.

"minimal_changes": lambda python_carla_scenario_raw: f"""
1 - Context: You are a tool for decreasing the driveability of scenarios in the driving
simulator Carla.
2 - Task: Decrease the driveability of the scenario by enhancing it with

more details and complexity, using only methods that are part of the

official Carla API, version 0.9.15.

3 - Input, the Python specification for the scenario: {python_carla_scenario_raw}

4 - Reasoning: Think step by step about how to make the scenario more complex and less
driveable, considering possible obstacles, traffic, weather, and other factors using
only the official Carla API.

5 - Output: Only output the enhanced scenario code in Python Carla scenario

format, with no additional text or explanation. Make sure to only use

methods and concepts that are already present in the input scenario, and

do not introduce any new methods or concepts. The changes should be as

minimal as possible while still achieving the goal of decreasing driveability.
wan
>

Listing 6.3: A prompt instructing the LLM to make as few changes as possible
to increase the likelyhood of it working without issues.

This approach works well. We have been able to obtain several working
scenarios with decreased driveability with this prompting strategy.

Let us now review some of these enhanced versions of the scenario.

Enhanced scenarios

The enhanced scenarios are simply presented here, and then analysed later
in Result analysis 77,

Figure 6.277* gives a visual representation of the initial state of one en-
hanced scenario.

Another result (Figure 6.3 7%**) places a vehicle parked on the edge of the
road. This is in line with our prompt, representing a change that is both
(1) minimal, and still (2) decreasing driveability.

Let us now review the jerk metric for these variations of the scenario (Fig-
ure 6.4 77%).
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pygame window

Press 'H' or '?' for help.

Figure 6.2: A screenshot of a minimally enhanced ‘follow’ scenario with a
truck in the road.

pygame window

Press 'H' or '?' for help.

Figure 6.3: A screenshot of another minimally enhanced ‘follow’ scenario
with a van parked on the side of the road.
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Figure 6.4: Jerk of the ego vehicle in the base and enhanced ‘follow’ scenarios.
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6.1.2 Base scenario: Accident

The accident scenario is a bit more complex than the ‘follow’ scenario, rep-
resenting a scene on a highway where several cars have piled up in front,
and the ego vehicle comes around a corner. Figure 6.5a7?* visually renders
the starting point of the scenario. Note the ‘accident ahead’ sign on the
right-hand side of the road. Upon continuing further, a pileup of several
vehicles appear in the distance. The base scenario ends with our ego coming
to a halt behind the piled up vehicles. Figure 6.5 7?* shows the start point
and the progression of the ego continuing around the corner. Figure 6.6 7?-*
shows how the situation ends — with the ADS ego stopping behind the pileup
of other vehicles.

(a) Start of the ‘accident’ scenario. (b) Ego vehicle underway.

Figure 6.5: Progression of the base ‘accident’ scenario: start and underway.

(a) The ego stopped behind the pileup. (b) The same situation from a different angle.

Figure 6.6: The final ego vehicle state in the base ‘accident’ scenario.

As for the ‘follow’ scenario, we will enhance the scenario using LLMs and
measure the jerk of the ego vehicle between the executions of the scenarios,
only presenting the enhanced scenarios and their data points here, and then
analysing them later in Result analysis™?*.
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Enhanced scenarios

The first enhancement is done using the ‘minimal changes’-prompt (listing
6.3). It is rendered visually in Figure 6.7 7?* and the complete diff of this
enhancement is rendered in listing A.3 in Section A.2 7?9,

(a) The ego stopped behind the pileup, (b) The same situation from a different per-
with the vehicles on bollards. spective.

Figure 6.7: The final ego vehicle state in the minimally enhanced ‘accident’
scenario.

"minimal_changes_specific_metric": lambda python_carla_scenario_raw, specific_metric: f"""
1 - Context: You are a tool for decreasing the driveability of scenarios in the driving
simulator Carla.
2 - Task: Decrease the driveability of the scenario by enhancing it with

more details and complexity, using only methods that are part of the

official Carla API, version 0.9.15.

3 - Input, the Python specification for the scenario: {python_carla_scenario_raw}

4 - Reasoning: Think step by step about how to make the scenario more complex and less
driveable, considering possible obstacles, traffic, weather, and other factors using
only the official Carla API.

5 - Output: Only output the enhanced scenario code in Python Carla scenario

format, with no additional text or explanation. Make sure to only use

methods and concepts that are already present in the input scenario, and

do not introduce any new methods or concepts. The changes should be as

minimal as possible while still achieving the goal of decreasing

driveability.

Focus on making the scenario more difficult with respect to the

following specific metric: {specific_metric}
win
>

Listing 6.4: A prompt instructing the LLM to make as few changes as possible,
while maximizing a specific metric.

In order to obtain more interesting results, we again iterate on the prompt
and add the requirement of the LLM optimizing for the jerk metric. The
iterated prompt is rendered in listing 6.4. Note how the prompt is generic
and takes the metric as an argument, allowing for other metrics to be used
in a similar fashion.

So, what did the LLM do? For brevity, the diff is rendered in the appendix
Section A.27?»* (listing A.4). From inspecting the diff, it is clear that the
LLM has focused on tweaking the already existing properties of the scenario,
opting to not add additional ontological entities. Not only that, but it has
also carried out the modifications for other scenarios that are also represented
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in the same file. Thus, for our ‘accident‘ scenario, it has only really done the
following enhancement, as seen in listing 6.5.

@@ -69,9 +69,9 @@ class Accident (BasicScenario):

self._first_distance = 10
self._second_distance = 6
self._trigger_distance = 50

i self._trigger_distance = 20 # Decreased to force sharper reactions
self._end_distance = 50
self._wait_duration = 5

+ self. _wait_duration = 1 # Decreased to allow less reaction time
self._offset = 0.6

Listing 6.5: The relevant subset of the diff from instructing the LLM to make
as few changes as possible, while maximizing a specific metric.

Therefore, we do yet another iteration of the prompt, underlining what scen-
ario the LLM should focus on (listing 6.6).

"minimal_changes_shared_file_specific_metric": lambda python_carla_scenario_raw,
scenario_name, specific_metric: f"""

1 - Context: You are a tool for decreasing the driveability of scenarios in the driving
simulator Carla.

2 - Task: Decrease the driveability of the scenario by enhancing it with

more details and complexity, using only methods that are part of the

official Carla API, version 0.9.15.

3 - Input, the Python specification for the scenario:

{python_carla_scenario_raw}4 Note that there are several scenarios in the file,

but you should only modify the one called {scenario_name}. Don’t change any of the

other scenarios.

4 - Reasoning: Think step by step about how to make the scenario more complex and less
driveable, considering possible obstacles, traffic, weather, and other factors using
only the official Carla API.

5 - Output: Only output the enhanced scenario code in Python Carla scenario

format, with no additional text or explanation. Make sure to only use

methods and concepts that are already present in the input scenario, and

do not introduce any new methods or concepts. The changes should be as

minimal as possible while still achieving the goal of decreasing

driveability.

Focus on making the scenario more difficult with respect to the

following specific metric: {specific_metric}
wan
s

Listing 6.6: A prompt instructing the LLM to make as few changes as possible,
while maximizing a specific metric only in a specified scenario.

(a) A screenshot from the jerk optimized
‘accident’ scenario with the focused on
modifying the correct scenario. See listing
A5,

(b) A screenshot from the jerk optimized ‘ac-
cident’ scenario with the ego stopped.

Figure 6.8: The final ego vehicle state in two enhanced ‘accident’ scenarios.

Note how the vehicle behind the taxicab is moving in Figure 6.8a 7.
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arios.



Chapter 7

Discussion

I would rather have questions that can’t be answered than
answers that can’t be questioned.
Feynman

This chapter will analyse the Results 7?* in light of what they achieve and
evaluate the feasibility of the LLM4DD approach in comparison to other
methods. Finally, we discuss some broader aspects related to scenario-based
testing of ADSs in general.

7.1 Result analysis

The following section will analyse the data presented in the Results~?%
chapter, evaluating the degree to which the results satisfy the research ques-
tions, and whether the LLM was able to decrease driveability in a meaningful
degree.

Overall, the experiments indicate that the initially proposed solution of feed-
ing bare ADS scenarios represented by Python code into LLMs, can yield
meaningful results. While the LLM can propose excessive changes that causes
issues when performing the simulation when left to its own initiative, the
output scenarios are good and provide increased insight into the ADS when
the LLM is restricted to propose minimal changes to the scenario. Keeping
the major components as they were appears to increase the likelihood of the
scenario still being able to be be ran without excessive problems.

48
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7.1.1 LLM evaluation

As outlined in Finding a suitable LLM ~?-*  the experimentation was done
using a locally hosted 7.2B parameter Mistral model, and a far larger Gemini
model — Gemini 2.5 flash. The Gemini model obtained significantly better
results than the Mistral model, probably due to its size. The mistral model
produced incoherent output and was a lot slower'. This is why all the

following results are done with the Gemini model.

7.1.2 Table of scenario failures

As outlined in Hallucinations in the enhanced scenarios 7?-**, the LLM was
found to be prone to hallucinate problematic output in certain scenarios.
Table 6.1 gives a quantification of the various statuses encountered while
performing LLM experiments for this thesis, outlining (1) to what extent
scenarios just worked, and (2) giving statistics of the various kinds of failures.
Note that each modified scenario can only ever be counted as 1 sort of failure.
So if a scenario fails due to hallucinated imports, it will not also count as
a scenario that failed due to having illegally placed objects regardless of
however many cases of this it might have attempted. In a similar fashion, we
are only able to track the first instance of the error within a given scenario.
So if a modified scenario contains 2 hallucinated imports, it will only be
counted as 1 in table 6.1.

Something the that the table fails to represent, which is interesting, is the
dispersion of errors. Certain scenarios tend to share the same kind of error
across several enhancements. This can sway the results and make them
appear worse than they are.

7.1.3 Enhanced scenarios: Follow vehicle

Let us now analyse the results from the experiments that used the
FollowLeadingVehicle scenario as their base.

As presented in Base scenario: Follow vehicle 7?*  the LLM is indeed able
to enhance this scenario. We show how the most basic prompt (listing 6.1)
fails to rein in the LLM which leads to hallucination that causes the scenario
to fail to run.

We then iterate on the prompt (listing 6.2) in order to reduce the hallucin-
ations and be able to get a runnable scenario out form the LLM. But even
this does not work — the enhanced scenario still fails to run.

! Arguably probably due to it running on quite weak hardware. Speed is not a fair com-
parison.
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This is why we iterate on the prompt again, instructing the LLM to make
minimal changes (listing 6.3), with the rationale that if the changes to an
already working scenario are minimal, there is a greater chance that the
output scenario will also work due to how similar they are.

While this reduces our potential gain — it would naturally be more interesting
to see significantly modified scenarios — this does work, and the output
scenario is runnable.

The first runnable enhanced scenario — Figure 6.2 7?** — entails having there
be a truck in the middle of the road. This significantly decreases the drive-
ability of the scenario — it is no longer possible to simple drive straight, the
ADS must handle the problem of a static vehicle in its path.

Comparing this visually to the base scenario (Figure 6.1 7?*°) clearly high-
lights how the ADS has decreased the driveability of the scenario by presenting
additional motion planning challenges. This intuition is corroborated by the
jerk figures from executing the 2 scenarios (Figure 6.4 7?4)

In the case of the base scenario (Figure 6.4a7?*), we see that the jerk is
mostly stable after the initial acceleration. This is in line with what we expect
form the vehicle simply being able to continually drive straight at constant
speed. The dip at the end represents the vehicle coming to a halt at a traffic
light. This is the end of the scenario.

In the case of the first minimally enhanced scenario (Figure 6.4b 7?**), we see
that the jerk is substantive at first, while converging at 0 after a short while.
This is due to the ADS simply not being able to pass the truck in the middle
of the road. This demonstrates a significant value in our proposed tool — here
lies a scenario that can be manually reviewed and used for evaluating why
the ADS failed to drive past the parked truck.

On the other hand, the other runnable enhanced ‘follow’ scenario (Fig-
ure 6.3 7P*?) is not indicated to have decreased driveability in the jerk graph.
The jerk in 2nd enhanced follow scenario (Figure 6.4c 7?**) is stable. This
tells us that our ego vehicle was able to pass the parked van without additional
issues?.

And this makes sense. The ADS has been presented with an additional
challenge (the parked van on the side of the road), making the scene more
complex, but it was able to solve the problem without any extra effort. This
has given us increased insight into the workings of the ADS, making this

2In the provided simulation execution, the other vehicle spent a substantial amount of
time at the intersection, which is why the jerk appears as 0 for some time before the
simulation terminates.
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count as a result. The jerk need not always increase to count as a result —
the same jerk is still a meaningful result?.

7.1.4 Enhanced scenarios: Accident

Let us now analyse the results from the experiments that used the Accident
scenario as their base.

The first enhancement is done using the ‘minimal changes’-prompt (listing
6.3), and similarly to the ‘follow’ scenario, it also works well for the ‘accident’
scenario, resulting in an output scenario that is able to run on the Carla
simulator without significant issues.

However, due to the nature of the enhancement the LLM has opted for, no
changes are being reflected in the jerk metrics. The LLM tries to make 2 modi-
fications: (1) situating the piled-up vehicles on bollards, and (2) spawning
pedestrian actors. The spawning of the pedestrian actors fails, but situating
some of the vehicles on cones works. This has, however, minimal effect on the
ego vehicle. It completes the same action as it did when the other vehicles
were situated on the ground. Furthermore, the concept of having vehicles
balancing on bollards in the middle of the road has some seriously dubious
realism.

Iterating on the prompt, we still want to optimize for the jerk metric and
experiment with including this specific metric in the prompt (c.f. listing
6.4). Utilising the jerk prompt yields similar results to the base prompt
that doesn’t mention any metrics. While one could argue that this is an
enhancement, it is not that interesting. It is too minimal to be of any real
value. Note that the prompt does instruct the LLM to indeed do be minimal,
so this is not strictly speaking a mistake by the LLM.

Note how prompt 6.4 led to the LLM modifying several scenarios. This is
caused by the file in question housing several scenarios. This is not in itself
wrong per se, but we naturally wish to isolate the scenario we are working
on and not distract the LLM with other scenarios. We therefore iterate on
the prompt again and specify the name of the relevant scenario in the file,
as shown in listing 6.6.

Upon executing this final prompt, we get a better result, with a set of changes
that only affect the relevant ‘accident’ scenario. But even then, the execution
of the scenario is in many ways the same. The most striking difference is that
another vehicle is now moving. But this has no effect on the ego vehicle, as
it stops before interacting with the now moving vehicle. The diff is rendered

3See also Section 8.2.8 P65,
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in listing A.5, and the visual state is shown in Figure 6.8a 77,

Finally, let us review the calculated jerk metrics from these runs of the
‘accident’ scenario, similarly to the initial ‘follow’ scenario. As shown in
Figure 6.97?*  there are no significant gains. They all follow the same
pattern, which is in line with what we expect from having coming to a halt

behind stationary vehicles.

Overall, this indicates this being a feasible way of obtaining less driveable
ADS scenarios with minimal costs, in many ways helping with solving our
stated problems (Section 1.2 7?2). LLMs seem capable of performing Concep-
tual blending 7?** between the concept of an ADS scenario and the concept
of driveability.

7.2 Research question analysis

Let us finish the result analysis by returning to our initial research questions
from Chapter 17?! and review to what extent this work and its Results 7#-%
has answered them.

7.2.1 RQl

Recall that RQ1 says ‘Can Large Language Models be used to decrease the
driveability of Autonomous driving system simulator scenarios?’.

The answer to this is clearly yes. Examples of enhanced scenarios ~?** demon-
strate decreased driveability in several scenarios, across 2 different base scen-
arios. The difference between the base and its enhanced counterpart is
however typically not that significant, as various problems arose when the
LLM was allowed to make excessive changes. The LLM oriented aspects 7?-%
section of Chapter 8 7?® proposes several strategies for remedying this fact.

7.2.2 RQ2

Recall that RQ2 says ‘Is it feasible to employ LLMs for obtaining unseen
scenarios for ADS testing without human intervention?’.

This is less clearly a success. While certain scenarios did work without
human intervention, a greater number needed minor human adjustments (see
Table 6.1 77%). The LLM oriented aspects ~?® section of Future work —?-%
also proposes several strategies for remedying this aspect.
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7.3 Broader discussion

This section will discuss various aspects related to this LLM-based approach
of decreasing driveability in ADS simulator scenarios that are of a general
nature and not necessarily tied to any specific experiment result.

7.3.1 Scenario modification versus scenario generation

This project concerns itself with taking existing scenarios and modifying them.
This is in many ways similar to scenario generation, but there are also certain
key differences. Let us review some of these:

When generating a new scenario, the principal factor in determining what it
will contain, is a combination of your generation technique, and what sort of
training data you will have used for obtaining this technique. As such, you
might not always have complete control of what underlying data will be used
for the generation of your specific scenario.

With the LLM4DD approach wherein the user provides a base scenario them-
self, there is 100% certainty of what the base scenario will be. Thus, we
obtain significant inherent knowledge of the scenario substrate*. Naturally,
you may object, the same problem of the ‘unknown substrate’ will present
itself in form of our LLM executing the prompt and inferring what the new —
enhanced — scenario will look like. But then, I maintain that we still propose
a significant value in the increased awareness of the base scenario and its
substrate. As we have seen in the Results 7% the changes made by the
LLM typically don’t alter the underlying ontology of the scene.

Yao et al. point out that generating new scenarios compared to enhancing
existing ones may lead to a distributional shift from the original underlying
scenes, which can undermine the validity of using these scenes for testing
purposes |54, p. 1], whereas using real-world driving data as a basis for enhan-
cing the scenario would to a greater extent assert that their data distribution
is in line with what can be expected in the real world [54, p. 2].

This touches on a broader topic concerning the value of having this knowledge
of the scenario substrate. While this is not the focus of this work, one
potential aspect could be a sort of grounding related to the ‘sim2real’ gap,
and the realism of the scene. Let us now delve further into this.

7.3.2 Realism in the enhanced scenario

If your task is to ‘obtain bad driveability in a scenario using Large Language
Models’ in a very general sense, one can imagine all sorts of creative ways

4Assuming of course that the user has this knowledge of their base scenario.
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this can be achieved. But in our more narrow scope of wishing to highlight
practical faults in the ADS, we must add another criterium — realism.

If your scene is bonkers, it will be very easy to get bad driveability. But there
is little value and/or practical applicability in these scenarios. Realism in
ADS simulator scenarios is a research field in itself with major implications
for how scenario-based testing ought to be done.

Wu et al. have looked into evaluating ADS simulator scenario realism using
LLMs [53, p. 40]. Note the distinction between this sort of realism in the
‘aligns with our understanding of reality’-approach, and the more technical
understanding of realism that posits that the scenario must adhere to the
laws of physics, and make sure to not spawn objects in such a way that they
intersect (which would also violate the laws of physics) etc. Chang et al.
also underline the importance of realism, proposing a scoring function that
takes realism into account for evaluating their LLM-generated ADS simulator
scenarios [6, pp. 6581-6582]°.

When modifying an existing scenario, the output scenario will in my ways
resemble the initial version. This asserts a certain realism grounded in the
initial scenario, assuming that it was itself generally realistic. When generat-
ing a brand new scenario, it is plausible that we may lose this connection to
reality.

Sim 2 real gap

The so called ‘sim2real’-gap refers to the distance between a simulation and
the real world. We typically wish to minimize this gap in order to increase
the applicability of our simulations to real world aspects. If there were a
significant gap between our simulated ADSs and the real world, there would
be minimal value in performing the simulations and the motivation for using
simulator would falter.

One quite clear example of this, we can find in Section 6.1.2 7?* — the LLM
proposes making changes in such a way that several vehicles are situated on
top of bollards. This is quite questionable. Not only because it makes no sense
that cars could ever balance in such a way on the bollards, but also because
— why would the bollards be under vehicles in the first place? It would be far
more realistic to have the bollards be placed around the piled-up vehicles such
that the ADS would need to go around them. This would be a more realistic
enhancement, and provide a more valuable insight into the performance of the
ADS. That said, it would probably require more logic in order to calculate
the positions dynamically based on what bollards are located where, in such

—p.21

5See also LLM driven scenario generation in Related work ~P*® for more on this

work.
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a way that base LLMs typically don’t have the possibility of doing without
additional tooling that allows for executing Python code and determining
what these position should have been.

7.3.3 LLM aspects

This section discusses various aspects related to employing specifically LLMs
for this project. It outlines potential ethical issues and discusses why LLMs
may not be perfectly suited for the task at hand.

Cost/benefits of using LLMs

LLMs consume significant resources (Section 2.4.47#**). In order to justify
their adaptation for ADS scenario enhancement, we should evaluate whether
the pros outweigh the cons. While this remain out of scope for the current
thesis and while we demonstrated promising results in Chapter 6 7% it is
important to keep in mind the environmental cost of using the LLMs for this
purpose. How good should the results need to be in order to justify using
LLMs?

Perhaps future work can look into obtaining similar results using greener
strategies.

Context size

By their nature, LLMs have a set context size. If your prompt exceeds the
context size of the LLM, it will appear to ‘forget’ parts of the input. This
poses a potential problem for our scenarios. As the scenario complexity
increases, so will the length of the prompt. There will inevitably come a
point where the LLM can no longer take the entire scenario into account.
One potential way of remedying this could perhaps be to only include a
subset of the scenario definition file into the prompt, so that it will consume
fewer tokens.

Furthermore, certain scenarios sometimes exist in one file. l.e., we use a
single file to represent several scenarios. This can potentially cause issues for
the LLM in that it will need to know which scenario it is to focus on. This
has, however, not caused significant issues for this project.

Alignment

AT alignment is a topic in of itself. How can we know that goals of the Al
are the same goals as we have?
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Bias

One of the motivations for performing this project, was to circumvent poten-
tial bias with the scientists that manually create scenarios. But it’s worth
noting that this LLM4DD scenario modification approach is still vulnerable
to bias based on the LLM training data.

Furthermore, how can we be sure that the enhanced scenarios will reflect
the diverse set of possible driving situations? While we indeed know that we
will get scenarios with decreased driveability, we have no measure of these
scenario’s relevance for global communities where traffic standards vary.

Perhaps the LLM has some hidden bias preventing it from allowing us to
exploit certain aspects of the scenes?

What is being changed in the scenario?

Scenarios centre on the ego vehicle. But what if the LLM changes parts of
the scene that don’t affect the ego? In these cases, all metrics should be more
or less the same®. But then there is no point in having done the modification.
This has also not been a problem for these experiments.

Who will own the scenario data?

Different scenario datasets are licensed under various terms, and similarly,
different LLMs” offer various terms for how the data they receive as input is
to be processed. If the scenario is non-public or strictly licensed, using it as
input to an LLM may not be all that straightforward. A workaround could
be to use on-prem LLMs, but this requires significant compute resources.

Avoiding these kinds of legal questions is one of the reasons for why the
LLM4DD implementation was evaluated using highly publicized MIT-licensed
first-party scenarios.

7.3.4 Scenario formats

This project utilises scenarios in the Python format. Scenarios can also be
represented by other formats as we saw in Section 2.1.1 7?7  the principal
option being OpenSCENARIO. OpenSCENARIO exists both as an XML-
based format, and as a Domain specific language (DSL). These 3 options all
have their pros and cons. Let us discuss some of these.

5Keep in mind that the ADS motion planners are not deterministic, and as such the metrics
will typically not be identical.
"Or more specifically, their (typically commercial) REST APIs.
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It’s worth noting that the proposed solution can trivially be adapted to work
with other formats.

Python

One major advantage with using Python formats is that most LLMs have
significant familiarity with it due to the significant amount of readily available
Python training data. But this is a double-edged sword — Python has been
around for a significant amount of time, and has undergone significant changes.
Thus, when prompting the LLM to enhance a Python scenario, there arises
several potential issues related to e.g.:

e language syntax, and
e dependency versions.

As outlined in the Results 7?»* the LLMs are prone to hallucinating in a
way that causes issues for executing the enhanced scenarios. But what s our
evidence that these execution problems stem from ‘true’ hallucination and
not one of these other sources of potential error? Perhaps the LLM did the
right thing, only to assume some antiquated generation target (e.g. older
version of the Carla simulator with its dependencies, or and older version of
the Python programming language).

In an ideal world, we would want an LLM that was fine tuned for this
specific purpose to optimize its knowledge of the relevant software versions
and decrease the likelihood of it for whatever reason attempting to use bad
versions that cause issues.

XML-based OpenSCENARIO

The XML-based format is probably the most traditional. Due to its sig-
nificantly less widespread usage, LLMs are less likely to have widespread
domain knowledge of it. A major advantage with this approach is that the
OpenSCENARIO specification is made and is less prone to being changed.

Something to note is that the Carla simulator only has limited support for
the features of OpenSCENARIO.
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DSL-based OpenSCENARIO

Similar to the XML-based format, the scenario DSL is less widely available
in training corpora. However, it also maintains the advantage of being more
static and less prone to change.

import basic.osc

type acceleration is SI(m: 1, s: -2)
unit kphps of acceleration is SI(m: 1, s: -1, factor: 0.277777778)

scenario top:

path: Path # A path in the map

path.set_map ("Town04") # specify map to use in this test
path.path_min_driving_lanes (2) # Path should have at least two lanes
ego_vehicle: Model3 # ego car

npc: Rubicon # The other car

event start
event end
do serial:
get_ahead: parallel(duration: 15s):
ego_vehicle.drive (path) with:
speed (30kph)
lane (1, at: start) # left to right: [1..n]
npc.drive (path) with:
lane(right_of: ego_vehicle, at: start)
position(15m, behind: ego_vehicle, at: start)
position(20m, ahead_of: ego_vehicle, at: end)
slow: parallel(duration: 10s):
ego_vehicle.drive (path)
npc.drive (path) with:
speed (10kph)
accelerate: parallel(duration: 13s):
ego_vehicle.drive (path)
npc.drive (path) with:
acceleration (15kphps)

Listing 7.1: An example of an OpenSCENARIO DSL scenario.

Listing 7.1 presents an example of an OpenSCENARIO DSL scenario, provid-
ing additional context for understanding the concept of the format. The
example is copied from the Carla scenario runner examples.

7.3.5 When is enough — when is the ADS safe?

An interesting perspective regarding this scenario based testing of ADSs is
this: How can we ever know that it has been sufficiently tested and is ready
for being deployed on public roads? When investigation this question, several
sub-problems arise.

As mentioned in the Problem description 7?-?) there are infinitely many edge
cases that are possible for ADS execution. Even if we propose one billion
test cases, and our ADS passes these, how can we know that it will also pass
the hypothetical ‘one billion and one-th’?

This is one of the principal problems precented in the motivation, and this
project has perhaps contributed somewhat to the problem by presenting a
way by which we can increase our confidence in the ADS, but the initial
problem presented in the Introduction, as outlined by Leahy et al. remain.


https://github.com/carla-simulator/scenario_runner/blob/master/srunner/examples/acceleration.osc
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Furthermore, even if it does pass all these tests, how can we be sure that it
acts in an ethical manner? There are several possible courses of action that it
can take in various situations and we need to be confident in the ADS making
the choice we deem the correct one on several levels — not only whatever the
unexplainable ADS motion planner places the highest. The trolley problem
of ethical philosophy [46] comes to mind — we should be prepared for our
ADS to have to handle such cases in operation.



Chapter 8

Future work

Whenever a theory appears to you as the only possible one, take
this as a sign that you have neither understood the theory nor the
problem which it was intended to solve.

Popper

This penultimate chapter proposes directions for future research aimed at
solving the same problem in a similar manner, based on (1) the experiences
gained during this work, and (2) approaches that there was not time to go
through with.

8.1 LLM oriented aspects

LLMs are naturally central for a work like this. The following section reviews
various LLM-related aspects that may stand to serve the goal of employing
LLMs for decreasing driveability in ADS simulator scenarios. The proposed
strategies stem from the experiences gained while performing the experiments
and analysing the results, and they relate both (1) to the actual LLMs, (2) how
the LLM can be exploited with prompts, and (3) recent techniques that aim
to reduce problems with LLM hallucinations.

8.1.1 Prompting strategies

For a work like this, the importance of the prompts cannot be understated. Fu-
ture work may stand to benefit from exploring different prompting strategies.
See for example [18]. Prompting techniques for persuading LLMs to per-
form actions they may find objectionable are presented by Meincke et al. and
shown to bear fruitful results |36, p. 1|. This might stand to remedy potential
alignment and bias issues (see section 7.3.3).
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8.1.2 Experimenting with other models

LLMs typically have different properties. Future work could evaluate different
models on the same experiments. Both for models that already exist today,
and models that will exist in the future.

8.1.3 Fine-tuned model

This work has exclusively used generalist LLMs. Given the necessary re-
sources, one could fine-tune a model specifically for this purpose, using scen-
ario definitions as training data.

8.1.4 Temperature configurations

As a consequence of how LLMs work internally, they have a temperature that
affects their output. For the same reasons that future work can explore the
applicability of other LLMs, testing the same LLMs with different temperat-
ure configurations may also yield an interesting insight into their applicability
for decreasing driveability in ADS simulator scenarios.

Keep in mind how hallucination was a significant factor when undertaking the
experimentation (see section 5.2.4). In order to decrease the hallucinations,
one would assume a lower temperature LLM to be more relevant.

8.1.5 Retrieval-augmented generation (RAG)

Retrieval augmented generation (RAG) is a novel technique that inserts
pieces of relevant external knowledge into an LLM’s context [56, pp. 88-89).
It would be interesting to employ such a strategy for this work. By adding
existing scenarios to the LLM’s context, it would be able to leverage these as
a source of legal ways of modifying scenarios in a way that we would know
to be both (1) legal, and (2) supported by the simulator. Perhaps this could
provide better results with less hallucinations?

8.1.6 Model context protocol (MCP)

Recently, a technique called Model context protocol (MCP) has been pro-
posed!, that allows for defining a specific interface for LLMs to interact with.
Future work could construct such an interface for modifying scenarios, clearly
demarcating what the LLM can and cannot do.

In a somewhat similar fashion to RAG, albeit with more strict limitations
imposed on the LLM, this could allow us to be more confident in knowing
that it would perform legal actions.

!See e.g. https://www.anthropic.com/news/model-context-protocol
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8.1.7 Tool manipulation

Tool manipulation is a technique for granting LLMs access to tools [56, p. 62,
e.g. the ability to call certain functions. Somewhat similar to MCP, but less
general — not standardized. For the same reasons that MCP can be used,
tool manipulation can be used. Define functions to add objects at locations
that the script determines to be legal with regard to the laws of physics and
the placement of other objects, and the LLM will then be able to utilise
this function as a black-box utility, without having to concern itself with the
ontological issues of object spawning.

8.2 Implementation oriented aspects

This section proposes methods for enhancing the existing implementation
(see chapter 4) with additional features or better techniques, motivating why
the additional features would be useful.

8.2.1 Static analysis of the enhanced scenario

As of now, the principal way of determining whether a modified scenario is
good and runnable, is by simply attempting to run it and see if it works.
This is not ideal as it wastes lot of time. Even more time is wasted if the
scenario causes the Carla simulator to crash?.

By employing techniques from the realm of programming language compilers,
we could perform a static analysis of the output scenario and evaluate whether
it adheres to the specification. This would allow us to filter out bad apples
before attempting to run them, circumventing the need for wasting time. For
example, we know that we should be able to parse the scenario. If parsing
fails, there is no need of sending the scenario to the simulation running
pipeline.

An advanced version of this could also look into the proposed spawn locations
of items in the scenario®, making sure that they don’t intersect and adhere
to the relevant laws of physics. Perhaps this could also serve to yield some
insight into the realism of the scenario.

8.2.2 GUI visualisation

Scenarios in ADS simulators are inherently visual. This can be leveraged
to create a tool for rendering visual representations of the scenarios in a
Graphical user interface (GUI). The GUI tool could show side-by-side the

2QGetting it back online is a quite involved and slow-to-complete process.
3That may overlap. . .
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base scenario and its enhanced counterpart, highlighting what has been mod-
ified. This will be more user friendly, and it will more clearly underline the
motivation behind why the enhanced scenario will have worsened driveability
compared to the base scenario. Perhaps one could even execute the scenarios
side-by-side, showing live metrics to the user.

8.2.3 Other datasets

For this thesis, a selection of quite basic scenarios from the Carla scenario
runner example scenario collection was used. However, the concept should
work for any Carla-compatible ADS scenarios. Several such options are
presented in Related work 7?8

8.2.4 More diverse scenarios

The base scenarios used for this work are generally western in nature. Global
ADS adaptation requires universal testing on a broad range of scenarios with
various traffic conditions and cultural aspects. Future work may stand to
benefit from employ this LLM-based approach in order to obtain a greater
number of scenarios from less widely available scenarios from regions where
relevant data is less prolific and existing scenarios are scarce.

8.2.5 Efficiency

Due to the somewhat ‘proof of concept’ nature of the current LLM4DD
implementation, performance and efficiency has not been afforded significant
attention. There are however some quite low-hanging fruits that stand to be
exploited. This subsection outlines some of these.

Concurrency of scenario processing

ADS scenarios are independent of each other. This means that our problem
is embarrassingly parallelizable* and we can trivially process several test cases
in parallel. Both performing the LLM enhancement, and executing them on
Carla, can be done regardless of all the other scenarios.

Python-specific enhancements

The Python-based LLM4DD implementation can be optimized using Just-In-
Time (JIT) compilers such as Numba [24], which can speed up our execution
times. Libraries such as Joblib provide Python with plug-and-play meomiza-
tion, which will allow us to re-use values that have already been computed,
saving time and energy.

*https://en.wikipedia.org/wiki/Embarrassingly_parallel
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8.2.6 Domain specific file format

These experiments have been performed using only default file-formats, rely-
ing on manual labour to track (1) what scenario x’ is the modified version of
what scenario x, (2) what prompt was used, (3) what® manual changes was
needed for executing, etc.

The scientific community could stand to benefit from developing a domain-
specific file format for this specific purpose. E.g. a JSON-based file format
that contained a copy of the (1) base scenario, the (2) enhanced scenario,
(3) what prompt was used, (4) the diff, (5) timestamp, etc. Perhaps even
what metrics were achieved while executing the 2 forms of the scenario. It
would however not be optimal to track several copies of the same base scenario
— there would be a lot of duplicates, and they would all have virtually the
same metrics.

This could all be achieved by wrapping a JSON file. Perhaps we could zip
or encode it to make it less prone to manual modification®.

8.2.7 More stable Carla setup

As outlined in Chapter 6 7% the Carla simulator just does not work with cer-
tain scenarios. Future work could stand to benefit from having the simulator
be more stable. That would allow from experimenting with a more diverse
array of base scenarios, which would stand expand the range of potential
scenarios we would be able to challenge the ADS with.

Jia et al. posit that the Nvidia GPU driver version of the host machine is
relevant for the Carla stability, finding that version 470 supposedly is optimal
and that version 5507 ‘has lots of bugs’ ®. The experiments of this project
have been done using version 580.

A possible alternate strategy could be to undertake a similar work within the
CommonRoad framework, bypassing Carla altogether®.

5If any ...

SWhich would invalidate its content and potentially serve to spoof the results.

"And presumably following versions.

8See https://github.com/Thinklab-SJTU/Bench2Drive#tdeal-with-carla, from the repo of their
paper [23].

9See e.g. https://commonroad.in.tum.de/tools/drivability-checker.
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8.2.8 More scientific way of evaluating a result

The current process of evaluating an experiment as failed or succeeded (see
Metrics 7?%), is not that scientific. It works sufficiently for our purposes of
evaluating the feasibility of the proposed solution, but there is a lot to be
gained by formalizing the evaluation process.

Future work could look into defining mathematical properties for what qual-
ifies as a ‘meaningfully decreased driveability’. Jahangirova, Stocco and
Tonella propose several evaluation criteria [21, p. 196]. One typical example
could be to look at whether the jerk exceeded a certain threshold during scen-
ario execution — but even then, we need to define what this threshold should
be. Several heuristics may be applicable. And it really isn’t the case that
‘more jerk’ indicates the presence of a result, as maintaining the same jerk
could be equally indicative of a result. This has to be tailored to the specific
scene, in light of what the LLM has changed. In certain cases it would be
good to see an increased jerk, and in other cases we would want it to remain
the same. The reason for this is that if the LLM changes something on the
other side of the map that doesn’t affect the ADS ego (c.f. Section 7.3.3 7?-¢),
we should not count it as a failure for the ADS if it fails to obtain more jerk
— it should be counted as a failure for the LLM.

8.3 Repurposing the LLM4DD implementation for
other applications

As we have discussed at length, this project and its initial version of the
LLM4DD pipeline is concerned with driveability of ADS simulator scenarios.
But as we saw in the latter part of section 7.3.5, there are a several other kinds
of open questions related to ADSs — e.g. ethical ones. Future work should
be able to repurpose the LLM4DD implementation by simply modifying
the prompts located in the 0din module and obtaining scenarios that are
enhanced with regard to other aspects outside of driveability. Due to the
LLMs’ ability to concept blend (c.f. section 2.4.2), members of the scientific
community should be able to experiment with most concepts. Perhaps the
LLM is able to obtain a set of scenarios in which the ADS ego must make
ethical choices? In that case, this could serve to further the insight into the
latter topics of section 7.3.5 significantly by opening the door to widespread
experimentation at minimal cost.



Chapter 9

Conclusion

This inductively justifies the conclusion that induction cannot
justify any conclusions.

David Deutsch

In this master’s thesis, we propose a tool — LLM4DD — for using LLMs to
decrease the driveability of ADS scenarios in order to increase confidence in
the ADS and expose underlying weaknesses in the system. We do a literature
review with both a theoretical and applied focus. We show that this work is
in line with what is to be expected from comparison with other related works
in the field, validating that the LLM4DD concept works quite well when
focusing on making less significant changes to the original scenario with a
focus on the jerk metric. When allowing the LLM to make excessive changes
to the scenario, the results indicate that problems related to hallucination
and simulator crashes arise under our current LLM- and prompting strategies.

The LLM4DD tool is a modularized pipeline tool, consisting of the compon-
ents 0din, Thor, and Loki, each component being respectively responsible
for handling (1) LLM integration, (2) ADS integration, and (3) user-based
orchestration.

We used the LLMs Mistral 7.2B and gemini-2.5-flash and various ori-
ginal prompts. The scenarios we used for evaluating the tool came from
the example set provided with the Carla scenario runner. We primarily fo-
cused on the scenarios Accident, CutIn, NoSignalJunctionCrossing and
FollowLeadingVehicle. The results obtained indicate a 63% error rate of
running a scenario after it has been enhanced. We classified these errors into
4 categories based on what caused the execution to fail.
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We propose several strategies for improving this initial version of the tool in
Future work = »-%°,

In conclusion, this thesis shows that LLMs can indeed be used to decrease
the driveability of ADS scenarios. The LLM-based approach presented in
this thesis and evaluated by implementing the LLM4DD tool, appears as a
promising contribution to furthering the state of the art of ADS verification
research.



CHAPTER 9. CONCLUSION

68




References

1]

2]

3]

4]

[5]

(6]

7]

Aizierjiang Aiersilan. ‘Generating Traffic Scenarios via In-Context
Learning to Learn Better Motion Planner’. In: Proceedings of the AAAI
Conference on Artificial Intelligence. Vol. 39. 14. 2025, pp. 14539—
14547. pot: 10.1609/aaai.v39i14.33593 (cited on pages 6, 20, 35).

Matthias Althoff, Markus Koschi and Stefanie Manzinger. ‘Common-
Road: Composable benchmarks for motion planning on roads’. In:
2017 IEEE Intelligent Vehicles Symposium (IV). 2017, pp. 719-726.
DOI: 10.1109/1VS.2017.7995802 (cited on page 7).

Philip W Anderson. ‘More Is Different: Broken symmetry and the
nature of the hierarchical structure of science.” In: Science 177.4047
(1972), pp. 393-396 (cited on page 12).

Emily M. Bender et al. ‘On the Dangers of Stochastic Parrots: Can
Language Models Be Too Big?’ In: Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and Transparency. FAccT '21.
Virtual Event, Canada: Association for Computing Machinery, 2021,
pp- 610-623. 1SBN: 9781450383097. DOI: 10.1145/3442188.3445922.
URL: https://doi.org/10.1145/3442188.3445922 (cited on page 13).

Roger Brown. ‘Reference in memorial tribute to Eric Lenneberg’. In:
Cognition 4.2 (1976), pp. 125-153. 1ssN: 0010-0277. poOI: https://doi.
org/10.1016/0010-0277(76)90001-9. URL: https://www.sciencedirect.
com/science/article/pii/0010027776900019 (cited on page 13).

Cheng Chang et al. ‘LLMScenario: Large Language Model Driven
Scenario Generation’. In: IEEE Transactions on Systems, Man, and
Cybernetics: Systems 54.11 (2024), pp. 6581-6594. po1: 10.1109/
TSMC.2024.3392930 (cited on pages 21, 22, 54).

He Chen et al. ‘Generating Autonomous Driving Test Scenarios based
on OpenSCENARIO’. In: 2022 9th International Conference on De-
pendable Systems and Their Applications (DSA). 2022, pp. 650-658.
DoOI: 10.1109/DSA56465.2022.00093 (cited on page 7).

69


https://doi.org/10.1609/aaai.v39i14.33593
https://doi.org/10.1109/IVS.2017.7995802
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/https://doi.org/10.1016/0010-0277(76)90001-9
https://doi.org/https://doi.org/10.1016/0010-0277(76)90001-9
https://www.sciencedirect.com/science/article/pii/0010027776900019
https://www.sciencedirect.com/science/article/pii/0010027776900019
https://doi.org/10.1109/TSMC.2024.3392930
https://doi.org/10.1109/TSMC.2024.3392930
https://doi.org/10.1109/DSA56465.2022.00093

REFERENCES 70

[8] Zhengxian Chen et al. ‘Predicting driving comfort in autonomous
vehicles using road information and multi-head attention models’. In:
Nature Communications 16.1 (Mar. 2025), p. 2709. 1SSN: 2041-1723.
DOI: 10.1038/s41467-025-57845-z. URL: https://doi.org/10.1038/
s41467-025-57845-z (cited on pages 22, 23).

[9] Can Cui et al. ‘Drive As You Speak: Enabling Human-Like Interaction
With Large Language Models in Autonomous Vehicles’. In: Proceedings
of the IEEE/CVFE Winter Conference on Applications of Computer
Vision (WACV) Workshops. Jan. 2024, pp. 902-909 (cited on page 16).

[10] Can Cuiet al. Large Language Models for Autonomous Driving (LLM4AD):
Concept, Benchmark, Experiments, and Challenges. 2025. arXiv: 2410.
15281 [cs.RO]. URL: https:/arxiv.org/abs/2410.15281 (cited on pages 2,
16, 18).

[11] Jean-Emmanuel Deschaud. KITTI-CARLA: a KITTI-like dataset
generated by CARLA Simulator. 2021. arXiv: 2109.00892 [cs.CV].
URL: https:/arxiv.org/abs/2109.00892 (cited on page 6).

[12] Yi Ding and Tianyao Shi. ‘Sustainable LLM Serving: Environmental
Implications, Challenges, and Opportunities : Invited Paper’. In: 2024
IEEE 15th International Green and Sustainable Computing Conference
(IGSC). 2024, pp. 37-38. pOI: 10.1109/IGSC64514.2024.00016 (cited
on page 15).

[13] Alexey Dosovitskiy et al. ‘CARLA: An Open Urban Driving Simulator’.
In: Proceedings of the 1st Annual Conference on Robot Learning. 2017,
pp. 1-16 (cited on page 6).

[14] Epic Games. Unreal Engine. Version 4.22.1. 25th Apr. 2019. URL:
https://www.unrealengine.com (cited on page 6).

[15] Gilles Fauconnier and Mark Turner. ‘Conceptual Blending, Form and
Meaning’. In: Recherches en Communication; No 19: Sémiotique
cognitive — Cognitive Semiotics; 57-86 19 (Mar. 2003). porl: 10.
14428/rec.v19i19.48413 (cited on page 13).

[16] Fred Feng et al. ‘Can vehicle longitudinal jerk be used to identify
aggressive drivers? An examination using naturalistic driving data’.
In: Accident Analysis € Prevention 104 (2017), pp. 125-136. ISSN:
0001-4575. DOI1: https://doi.org/10.1016/j.aap.2017.04.012. URL:
https://www.sciencedirect.com/science/article/pii/S0001457517301409
(cited on page 11).

[17] Erwin de Gelder, Maren Buermann and Olaf Op Den Camp. ‘Coverage
Metrics for a Scenario Database for the Scenario-Based Assessment of
Automated Driving Systems’. In: 2024 IEEFE International Automated
Vehicle Validation Conference (IAVVC). IEEE. 2024, pp. 1-8 (cited
on page 7).


https://doi.org/10.1038/s41467-025-57845-z
https://doi.org/10.1038/s41467-025-57845-z
https://doi.org/10.1038/s41467-025-57845-z
https://arxiv.org/abs/2410.15281
https://arxiv.org/abs/2410.15281
https://arxiv.org/abs/2410.15281
https://arxiv.org/abs/2109.00892
https://arxiv.org/abs/2109.00892
https://doi.org/10.1109/IGSC64514.2024.00016
https://www.unrealengine.com
https://doi.org/10.14428/rec.v19i19.48413
https://doi.org/10.14428/rec.v19i19.48413
https://doi.org/https://doi.org/10.1016/j.aap.2017.04.012
https://www.sciencedirect.com/science/article/pii/S0001457517301409

71

REFERENCES

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Louie Giray. ‘Prompt Engineering with ChatGPT: A Guide for Aca-
demic Writers’. In: Annals of Biomedical Engineering 51.12 (Dec.
2023), pp. 2629-2633. 1SSN: 1573-9686. DO1: 10.1007/s10439-023-
03272-4. URL: https://doi.org/10.1007/s10439-023-03272-4 (cited on
page 60).

Junyao Guo, Unmesh Kurup and Mohak Shah. °‘Is it safe to drive?
An overview of factors, metrics, and datasets for driveability assess-
ment in autonomous driving’. In: IEEE Transactions on Intelligent
Transportation Systems 21.8 (2019), pp. 3135-3151 (cited on pages 7—
11).

WuLing Huang et al. ‘Autonomous vehicles testing methods review’. In:

2016 IEEE 19th International Conference on Intelligent Transportation
Systems (ITSC). IEEE. 2016, pp. 163-168 (cited on pages 9, 10).

Gunel Jahangirova, Andrea Stocco and Paolo Tonella. ‘Quality Metrics
and Oracles for Autonomous Vehicles Testing’. In: 2021 14th IEEE
Conference on Software Testing, Verification and Validation (ICST).
2021, pp. 194-204. por: 10.1109/ICST49551.2021.00030 (cited on
page 65).

Nidhal Jegham et al. How Hungry is AI? Benchmarking Energy, Water,
and Carbon Footprint of LLM Inference. 2025. arXiv: 2505.09598
[cs.CY]. URL: https://arxiv.org/abs/2505.09598 (cited on page 15).

Xiaosong Jia et al. ‘Bench2Drive: Towards Multi-Ability Benchmark-
ing of Closed-Loop End-To-End Autonomous Driving’. In: arXiv pre-
print arXiv:2406.03877 (2024) (cited on page 64).

Siu Kwan Lam, Antoine Pitrou and Stanley Seibert. ‘Numba: A llvm-
based python jit compiler’. In: Proceedings of the Second Workshop
on the LLVM Compiler Infrastructure in HPC. 2015, pp. 1-6 (cited on
page 63).

Kevin Leahy et al. Grand Challenges in the Verification of Autonomous
Systems. 2024. arXiv: 2411.14155 [cs.R0O]. URL: https://arxiv.org/abs/
2411.14155 (cited on pages 2, 58).

Krzysztof Lebioda et al. Are requirements really all you need? A
case study of LLM-driven configuration code generation for automotive
simulations. 2025. arXiv: 2505.13263 [cs.SE]. URL: https://arxiv.org/
abs/2505.13263 (cited on page 20).

Baolin Li et al. ‘Sprout: Green Generative Al with Carbon-Efficient
LLM Inference’. In: Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing. Ed. by Yaser Al-Onaizan,
Mohit Bansal and Yun-Nung Chen. Miami, Florida, USA: Association
for Computational Linguistics, Nov. 2024, pp. 21799-21813. po1: 10.


https://doi.org/10.1007/s10439-023-03272-4
https://doi.org/10.1007/s10439-023-03272-4
https://doi.org/10.1007/s10439-023-03272-4
https://doi.org/10.1109/ICST49551.2021.00030
https://arxiv.org/abs/2505.09598
https://arxiv.org/abs/2505.09598
https://arxiv.org/abs/2505.09598
https://arxiv.org/abs/2411.14155
https://arxiv.org/abs/2411.14155
https://arxiv.org/abs/2411.14155
https://arxiv.org/abs/2505.13263
https://arxiv.org/abs/2505.13263
https://arxiv.org/abs/2505.13263
https://doi.org/10.18653/v1/2024.emnlp-main.1215
https://doi.org/10.18653/v1/2024.emnlp-main.1215
https://doi.org/10.18653/v1/2024.emnlp-main.1215

REFERENCES 72

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

18653/v1/2024.emnlp-main.1215. URL: https://aclanthology.org/2024.
emnlp-main.1215/ (cited on page 15).

Pengfei Li et al. Making AI Less "Thirsty": Uncovering and Addressing
the Secret Water Footprint of AI Models. 2025. arXiv: 2304.03271
[cs.LG]. URL: https://arxiv.org/abs/2304.03271 (cited on page 15).

Wei Li and Yuyue Liu. ‘Adoption of autonomous driving technology:
An integration of innovation diffusion theory and motivation theory’.
In: Human Systems Management 0.0 (2025), p. 01672533251365121.
DoI: 10.1177/01672533251365121. eprint: https://doi.org/10.1177/
01672533251365121. URL: https://doi.org/10.1177/01672533251365121
(cited on page 1).

Xuan Li et al. ‘ChatGPT-Based Scenario Engineer: A New Frame-
work on Scenario Generation for Trajectory Prediction’. In: IEEE
Transactions on Intelligent Vehicles 9.3 (2024), pp. 4422-4431. DOTI:
10.1109/TIV.2024.3363232 (cited on page 21).

Yuanfei Lin, Michael Ratzel and Matthias Althoff. ‘Automatic Traffic
Scenario Conversion from OpenSCENARIO to CommonRoad’. In:
2023 IEEE 26th International Conference on Intelligent Transportation
Systems (ITSC). 2023, pp. 4941-4946. po1: 10.1109/ITSC57777.2023.
10422422 (cited on page 7).

Pengfei Liu et al. ‘Pre-train, Prompt, and Predict: A Systematic
Survey of Prompting Methods in Natural Language Processing’. In:
ACM Comput. Surv. 55.9 (Jan. 2023). 1SSN: 0360-0300. po1: 10.1145/
3560815. URL: https://doi.org/10.1145/3560815 (cited on pages 13, 14).

Chengjie Lu, Tao Yue and Shaukat Ali. ‘DeepScenario: An Open
Driving Scenario Dataset for Autonomous Driving System Testing’.
In: IEEE/ACM 20th International Conference on Mining Software
Repositories (MSR) (2023), pp. 52-56 (cited on pages 1, 5, 6, 9, 19).

Chengjie Lu et al. ‘Learning Configurations of Operating Environ-
ment of Autonomous Vehicles to Maximize their Collisions’. In: IEEFE
Transactions on Software Engineering 49.1 (2023), pp. 384—402. DOI:
10.1109/TSE.2022.3150788 (cited on page 19).

Y.K. Malaiya et al. ‘The relationship between test coverage and re-
liability’. In: Proceedings of 1994 IEEFE International Symposium on
Software Reliability Engineering. 1994, pp. 186-195. po1: 10.1109/
ISSRE.1994.341373 (cited on page 9).

Lennart Meincke et al. ‘Call Me A Jerk: Persuading Al to Comply
with Objectionable Requests’. In: The Wharton School Research Paper
(July 2025). por: 10.2139/ssrn.5357179. URL: https://ssrn.com/
abstract=5357179 (cited on page 60).


https://doi.org/10.18653/v1/2024.emnlp-main.1215
https://doi.org/10.18653/v1/2024.emnlp-main.1215
https://doi.org/10.18653/v1/2024.emnlp-main.1215
https://doi.org/10.18653/v1/2024.emnlp-main.1215
https://aclanthology.org/2024.emnlp-main.1215/
https://aclanthology.org/2024.emnlp-main.1215/
https://arxiv.org/abs/2304.03271
https://arxiv.org/abs/2304.03271
https://arxiv.org/abs/2304.03271
https://doi.org/10.1177/01672533251365121
https://doi.org/10.1177/01672533251365121
https://doi.org/10.1177/01672533251365121
https://doi.org/10.1177/01672533251365121
https://doi.org/10.1109/TIV.2024.3363232
https://doi.org/10.1109/ITSC57777.2023.10422422
https://doi.org/10.1109/ITSC57777.2023.10422422
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://doi.org/10.1109/TSE.2022.3150788
https://doi.org/10.1109/ISSRE.1994.341373
https://doi.org/10.1109/ISSRE.1994.341373
https://doi.org/10.2139/ssrn.5357179
https://ssrn.com/abstract=5357179
https://ssrn.com/abstract=5357179

73

REFERENCES

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Demin Nalic et al. ‘Scenario Based Testing of Automated Driving
Systems: A Literature Survey’. English. In: FISITA Web Congress
2020 ; Conference date: 24-11-2020 Through 24-11-2020. Nov. 2020,
pp. 1-10. URL: https://go.fisita.com/fisita2020 (cited on page 1).

Youngseok Park, Ji Hyun Yang and Sejoon Lim. ‘Development of Com-
plexity Index and Predictions of Accident Risks for Mixed Autonomous
Driving Levels’. In: 2018 IEEFE International Conference on Systems,
Man, and Cybernetics (SMC). 2018, pp. 1181-1188. por: 10.1109/
SMC.2018.00208 (cited on page 10).

Nenad Petrovic et al. ‘LLM-Driven Testing for Autonomous Driving
Scenarios’. In: 2024 2nd International Conference on Foundation and
Large Language Models (FLLM). 2024, pp. 173-178. po1: 10.1109/
FLLM63129.2024.10852505 (cited on page 20).

Andreas Riener. ‘The Driver as the Weak Point in Interaction’. In:
Sensor-Actuator Supported Implicit Interaction in Driver Assistance
Systems. Wiesbaden: Vieweg-+Teubner, 2010, pp. 67-70. ISBN: 978-
3-8348-9777-0. po1: 10.1007/978-3-8348-9777-0_7. URL: https:
//doi.org/10.1007/978-3-8348-9777-0_7 (cited on page 1).

Guodong Rong et al. ‘LGSVL Simulator: A High Fidelity Simulator
for Autonomous Driving’. In: arXiv preprint arXiv:2005.05778 (2020)
(cited on page 6).

Max Theo Schmidt, Ulrich Hofmann and M. Essayed Bouzouraa. ‘A
novel goal oriented concept for situation representation for ADAS and
automated driving’. In: 17th International IEEE Conference on In-
telligent Transportation Systems (ITSC). 2014, pp. 886-893. DOTI:
10.1109/ITSC.2014.6957801 (cited on page 7).

Shital Shah et al. ‘AirSim: High-Fidelity Visual and Physical Simula-
tion for Autonomous Vehicles’. In: Field and Service Robotics. 2017.
eprint: arXiv:1705.05065. URL: https://arxiv.org/abs/1705.05065 (cited
on page 6).

Shuhan Tan et al. Language Conditioned Traffic Generation. 2023.
arXiv: 2307.07947 [cs.CV]. URL: https://arxiv.org/abs/2307.07947
(cited on page 21).

John Thggersen et al. ‘Why do people continue driving conventional
cars despite climate change? Social-psychological and institutional
insights from a survey of Norwegian commuters’. In: Energy Research
& Social Science 79 (2021), p. 102168. 1SSN: 2214-6296. DOI: https:
//doi.org/10.1016/j.erss.2021.102168. URL: hitps://www.sciencedirect.
com/science/article/pii/S2214629621002619 (cited on page 1).


https://go.fisita.com/fisita2020
https://doi.org/10.1109/SMC.2018.00208
https://doi.org/10.1109/SMC.2018.00208
https://doi.org/10.1109/FLLM63129.2024.10852505
https://doi.org/10.1109/FLLM63129.2024.10852505
https://doi.org/10.1007/978-3-8348-9777-0_7
https://doi.org/10.1007/978-3-8348-9777-0_7
https://doi.org/10.1007/978-3-8348-9777-0_7
https://doi.org/10.1109/ITSC.2014.6957801
arXiv:1705.05065
https://arxiv.org/abs/1705.05065
https://arxiv.org/abs/2307.07947
https://arxiv.org/abs/2307.07947
https://doi.org/https://doi.org/10.1016/j.erss.2021.102168
https://doi.org/https://doi.org/10.1016/j.erss.2021.102168
https://www.sciencedirect.com/science/article/pii/S2214629621002619
https://www.sciencedirect.com/science/article/pii/S2214629621002619

REFERENCES 74

[46] Judith Jarvis Thomson. ‘The Trolley Problem’. In: The Yale Law
Journal 94.6 (1985), pp. 1395-1415. 1SSN: 00440094. URL: http://www.
jstor.org/stable/796133 (visited on 11/11/2025) (cited on page 59).

[47] Bill Tomlinson et al. ‘The carbon emissions of writing and illustrating
are lower for Al than for humans’. In: Scientific Reports 14.1 (2024),
p. 3732 (cited on page 15).

[48] Simon Ulbrich et al. ‘Defining and Substantiating the Terms Scene,
Situation, and Scenario for Automated Driving’. In: 2015 IEEFE 18th
International Conference on Intelligent Transportation Systems. 2015,
pp. 982-988. DOI: 10.1109/ITSC.2015.164 (cited on pages 6, 7).

[49] Ashish Vaswani et al. ‘Attention is all you need’. In: Proceedings of
the 31st International Conference on Neural Information Processing
Systems. NIPS’17. Long Beach, California, USA: Curran Associates
Inc., 2017, pp. 6000-6010. 1SBN: 9781510860964 (cited on page 11).

[50] Jian Wang et al. ‘A Survey of Vehicle to Everything (V2X) Testing’.
In: Sensors 19.2 (2019). 1SsN: 1424-8220. poI: 10.3390/s19020334.
URL: https://www.mdpi.com/1424-8220/19/2/334 (cited on page 10).

[51] Jason Wei et al. Emergent Abilities of Large Language Models. 2022.
arXiv: 2206.07682 [cs.CL]. URL: https://arxiv.org/abs/2206.07682
(cited on page 12).

[52] Klaus Peter Wershofen and Volker Graefe. ‘Situationserkennung als
Grundlage der Verhaltenssteuerung eines mobilen Roboters’. In: Autonome
Mobile Systeme 1996. Ed. by Giinther Schmidt and Franz Freyber-
ger. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, pp. 170-179.
ISBN: 978-3-642-80324-6 (cited on page 7).

[53] Jiahui Wu et al. ‘Reality Bites: Assessing the Realism of Driving
Scenarios with Large Language Models’. In: Proceedings of the 2024
IEEE/ACM First International Conference on Al Foundation Models
and Software Engineering. FORGE ’24. Lisbon, Portugal: Association
for Computing Machinery, 2024, pp. 40-51. 1SBN: 9798400706097.
DOI: 10.1145/3650105.3652296. URL: hitps://doi.org/10.1145/3650105.
3652296 (cited on page 54).

[54]  Yu Yao et al. AGENTS-LLM: Augmentative GENeration of Challen-
ging Traffic Scenarios with an Agentic LLM Framework. 2025. arXiv:
2507.13729 [cs.R0O]. URL: https:/arxiv.org/abs/2507.13729 (cited on
pages 2, 3, 24, 53).

[55] Tao Yue, Shaukat Ali and Man Zhang. ‘RTCM: a natural language
based, automated, and practical test case generation framework’. In:
Proceedings of the 2015 International Symposium on Software Testing
and Analysis. ISSTA 2015. Baltimore, MD, USA: Association for
Computing Machinery, 2015, pp. 397—408. 1SBN: 9781450336208. DOI:


http://www.jstor.org/stable/796133
http://www.jstor.org/stable/796133
https://doi.org/10.1109/ITSC.2015.164
https://doi.org/10.3390/s19020334
https://www.mdpi.com/1424-8220/19/2/334
https://arxiv.org/abs/2206.07682
https://arxiv.org/abs/2206.07682
https://doi.org/10.1145/3650105.3652296
https://doi.org/10.1145/3650105.3652296
https://doi.org/10.1145/3650105.3652296
https://arxiv.org/abs/2507.13729
https://arxiv.org/abs/2507.13729

75

REFERENCES

[56]

[57]

[58]

10.1145/2771783.2771799. URL: https://doi.org/10.1145/2771783.
2771799 (cited on page 19).

Wayne Xin Zhao et al. A Survey of Large Language Models. 2025.
arXiv: 2303.18223 [cs.CL]. URL: https://arxiv.org/abs/2303.18223
(cited on pages 11-14, 61, 62).

Yongqi Zhao et al. A Survey on the Application of Large Language
Models in Scenario-Based Testing of Automated Driving Systems. 2025.
arXiv: 2505.16587 [cs.SE]. URL: https://arxiv.org/abs/2505.16587
(cited on pages 1, 2, 17, 18).

Yongqi Zhao et al. ‘Chat2Scenario: Scenario Extraction From Dataset
Through Utilization of Large Language Model’. In: 2024 IEEE Intel-
ligent Vehicles Symposium (IV). 2024, pp. 559-566. po1: 10.1109/
IV55156.2024.10588843 (cited on page 22).


https://doi.org/10.1145/2771783.2771799
https://doi.org/10.1145/2771783.2771799
https://doi.org/10.1145/2771783.2771799
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2505.16587
https://arxiv.org/abs/2505.16587
https://doi.org/10.1109/IV55156.2024.10588843
https://doi.org/10.1109/IV55156.2024.10588843

Appendix

76



26

Appendix A

Scenario file diffs

The diffs represent the difference between two files, highlighting what has
changed. In this context — the red indicates something that was changed
from the original scenario, and the green indicates something that was added
by the LLM. The lines in black are unchanged.

A.1 Follow vehicle

See Section 6.1.1 7% for an overview and Section 7.1.3 7% for analysis of
this output.

A.1.1 Initial enhancement

diff --git a/srunner/scenarios/follow_leading_vehicle.py b/srunner/scenarios/
follow_leading_vehicle.py

index 5f60061..d09ccfb 100644

--- a/srunner/scenarios/follow_leading_vehicle.py

+++ b/srunner/scenarios/follow_leading_vehicle.py

@@ -27,265 +27,237 @@ from srunner.scenariomanager.scenarioatomics.atomic_behaviors import (
ActorTrans

ActorDestroy,
KeepVelocity,
StopVehicle,
- WaypointFollower)
iz WaypointFollower,
+ PedestrianWalk,
+ SetTrafficLightState,
+ ChangeAutoPilot)
from srunner.scenariomanager.scenarioatomics.atomic_criteria import CollisionTest
from srunner.scenariomanager.scenarioatomics.atomic_trigger_conditions import (
InTriggerDistanceToVehicle,
InTriggerDistanceToNextIntersection,
DriveDistance,
- StandStill)
+ StandStill,
o
TriggerDistanceToLocation)
from srunner.scenariomanager.timer import TimeOut
from srunner.scenarios.basic_scenario import BasicScenario
-from srunner.tools.scenario_helper import get_waypoint_in_distance

+from srunner.tools.scenario_helper import get_waypoint_in_distance,
get_location_in_distance_from_wp, get_crossing_point, get_next_traffic_light

7
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class FollowLeadingVehicle(BasicScenario):

- This class holds everything required for a simple "Follow a leading vehicle"
scenario involving two vehicles. (Traffic Scenario 2)

This is a single ego vehicle scenario

+ This class holds a complex "Follow a leading vehicle" scenario, enhancing
+ the basic scenario with:
+ - A parked vehicle on the side of the road, potentially narrowing the path.
+ - A pedestrian crossing the road in front of the leading vehicle.
+ - A dynamic vehicle that is on autopilot, adding to general traffic.
+ - A traffic light that turns red as the leading vehicle approaches, forcing
+ a more abrupt stop.
o
+ This is a single ego vehicle scenario.
wun
- timeout = 120 # Timeout of scenario in seconds
+ timeout = 180 # Increased timeout for added complexity
def __init__(self, world, ego_vehicles, config, randomize=False, debug_mode=False,
criteria_enable=True,
- timeout=60) :
+ timeout=180) :
wun
= Setup all relevant parameters and create scenario
+ Setup all relevant parameters and create scenario.
- If randomize is True, the scenario parameters are randomized
+ If randomize is True, the scenario parameters are randomized.
wun
self. _map = CarlaDataProvider.get_map ()
- self._first_vehicle_location = 25
- self._first_vehicle_speed = 10
i self._leading_vehicle_spawn_distance = 25 # Distance from ego trigger point
i self._leading_vehicle_speed = 10 # m/s
self . _reference_waypoint = self._map.get_waypoint(config.trigger_points[0].location)
- self._other_actor_max_brake = 1.0
- self._other_actor_stop_in_front_intersection = 20
- self._other_actor_transform = None
- # Timeout of scenario in seconds
+ self._leading_actor_max_brake = 1.0
+ self._leading_actor_stop_in_front_intersection = 10 # Stop closer to intersection
+
its # New actor parameters (distances relative to ego trigger point)
+ self._parked_vehicle_distance = self._leading_vehicle_spawn_distance + 30
i self._pedestrian_crossing_distance = self._leading_vehicle_spawn_distance + 45
+ self._pedestrian_speed = 1.0 # m/s
+ self._dynamic_vehicle_distance = self._leading_vehicle_spawn_distance + 15
+ self._dynamic_vehicle_speed = 12 # m/s
+
+ self._parked_vehicle_offset = 3.0 # Meters to the side of the lane
+ self. _traffic_light_state_change_trigger_distance = self.
_leading_actor_stop_in_front_intersection + 5 # When leading vehicle is this far from
intersection, turn light red
+
+ # Internal actor references
+ self._leading_vehicle = None
+ self . _parked_vehicle = None
+ self._pedestrian = None
+ self._dynamic_vehicle = None
+ self._traffic_light = None
i self._next_intersection_waypoint = None
-
self.timeout = timeout
= super (FollowLeadingVehicle, self).__init__("FollowVehicle",
- ego_vehicles,
- config,
- world,
- debug_mode ,
- criteria_enable=criteria_enable)
+ super (ComplexFollowLeadingVehicle, self).__init__("ComplexFollowLeadingVehicle",
+ ego_vehicles,
+ config,
+ world,
+ debug_mode ,
+ criteria_enable=criteria_enable)

if randomize:
- self._ego_other_distance_start = random.randint (4, 8)
i self._leading_vehicle_speed = random.uniform(8, 12)
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+ o+ o+ o+

+

A I A A A I

+ o+ o+ o+

+

self._pedestrian_speed = random.uniform(0.8, 1.5)

self._dynamic_vehicle_speed = random.uniform(10, 15)

self._leading_vehicle_spawn_distance = random.uniform(20, 30)

self . _parked_vehicle_distance = self._leading_vehicle_spawn_distance + random.
uniform(25, 35)

self._pedestrian_crossing_distance = self._leading_vehicle_spawn_distance +
random.uniform (40, 50)

self._dynamic_vehicle_distance = self._leading_vehicle_spawn_distance + random.

uniform (10, 20)

Example code how to randomize start location

distance = random.randint (20, 80)

new_location, _ = get_location_in_distance(self.ego_vehicles[0], distance)
waypoint = CarlaDataProvider.get_map().get_waypoint(new_location)
waypoint.transform.location.z += 39

self.other_actors [0].set_transform(waypoint.transform)

EE I

nitialize_actors(self, config):

Custom initialization
W

waypoint, _ = get_waypoint_in_distance(self._reference_waypoint, self.
_first_vehicle_location)

transform = waypoint.transform

transform.location.z += 0.5

first_vehicle = CarlaDataProvider.request_new_actor (’vehicle.nissan.patrol’,

transform)
self.other_actors.append(first_vehicle)

def _create_behavior(self):
W
The scenario defined after is a "follow leading vehicle" scenario. After
invoking this scenario, it will wait for the user controlled vehicle to
enter the start region, then make the other actor to drive until reaching
the next intersection. Finally, the user-controlled vehicle has to be close
enough to the other actor to end the scenario.
If this does not happen within 60 seconds, a timeout stops the scenario
Custom initialization for all actors.

# 1. Leading Vehicle

leading_vehicle_waypoint, _ = get_waypoint_in_distance(self._reference_waypoint, self
._leading_vehicle_spawn_distance)

leading_vehicle_transform = leading_vehicle_waypoint.transform

leading_vehicle_transform.location.z += 0.5 # Avoid z-fighting with road

self._leading_vehicle = CarlaDataProvider.request_new_actor (’vehicle.nissan.patrol’,

leading_vehicle_transform)
self.other_actors.append(self._leading_vehicle)

# Determine the target intersection and its traffic light for the leading vehicle to
stop

self. _traffic_light = CarlaDataProvider.get_next_traffic_light(self._leading_vehicle,
False)

if self._traffic_light:

self._next_intersection_waypoint = CarlaDataProviderAget_map().get_waypoint(self.
_traffic_light.get_transform().location)
else:
# Fallback if no traffic light found, find the next junction waypoint
curr_wp = leading_vehicle_waypoint
junction_wp = None
while True:
next_wps = curr_wp.next(5.0) # Look 5 meters ahead
if not next_wps: # End of road or invalid
break

for nw in next_wps:
if nw.is_junction:
junction_wp = nw
break
if junction_wp:
break
curr_wp = next_wps[0] # Continue along the first path

self. _next_intersection_waypoint = junction_wp if junction_wp else
get_waypoint_in_distance (leading_vehicle_waypoint, 100) [0]

# 2. Parked Vehicle

parked_vehicle_waypoint, _ = get_waypoint_in_distance(self._reference_waypoint, self.
_parked_vehicle_distance)

# Offset to the right of the lane

parked_vehicle_offset_waypoint = get_location_in_distance_from_wp (
parked_vehicle_waypoint, self._parked_vehicle_offset, False)
parked_vehicle_transform = carla.Transform(parked_vehicle_offset_waypoint.location,

parked_vehicle_waypoint.transform.rotation)
parked_vehicle_transform.location.z += 0.5
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+ o+ o+ o+

+ o+ o+ o+

+ o+ o+ o+ o+ o+

self._parked_vehicle = CarlaDataProvider.request_new_actor(’vehicle.tesla.model3’,
parked_vehicle_transform)

self._parked_vehicle.set_simulate_physics(False) # Parked, no physics needed

self.other_actors.append(self._parked_vehicle)

# 3. Pedestrian

pedestrian_spawn_waypoint, _ = get_waypoint_in_distance(self._reference_waypoint,
self._pedestrian_crossing_distance)
pedestrian_start_location, pedestrian_end_location = get_crossing_point(

pedestrian_spawn_waypoint)

pedestrian_transform = carla.Transform(pedestrian_start_location, carla.Rotation())

pedestrian_transform.location.z += 0.5 # Pedestrians are usually higher than 0 z

self._pedestrian = CarlaDataProvider.request_new_actor (’walker.pedestrian.0001’,
pedestrian_transform)

self.other_actors.append(self._pedestrian)

# 4. Dynamic Vehicle (adding general traffic complexity)

dynamic_vehicle_waypoint, _ = get_waypoint_in_distance(self._reference_waypoint, self

. _dynamic_vehicle_distance)
# Spawn in current lane or an adjacent one
if random.random() < 0.5 and dynamic_vehicle_waypoint.get_left_lane():

dynamic_vehicle_waypoint = dynamic_vehicle_waypoint.get_left_lane ()
dynamic_vehicle_transform = dynamic_vehicle_waypoint.transform
dynamic_vehicle_transform.location.z += 0.5
self._dynamic_vehicle = CarlaDataProvider.request_new_actor(’vehicle.audi.a2’,

dynamic_vehicle_transform)

self._dynamic_vehicle.set_autopilot (True, CarlaDataProvider.get_traffic_manager_port

0)

self.other_actors.append(self._dynamic_vehicle)

# let the other actor drive until next intersection

driving_to_next_intersection = py_trees.composites.Parallel(
"DrivingTowardsIntersection",
policy=py_trees.common.ParallelPolicy.SUCCESS_ON_ONE)

driving_to_next_intersection.add_child(WaypointFollower (self.other_actors[0], self
_first_vehicle_speed))
driving_to_next_intersection.add_child(InTriggerDistanceToNextIntersection(
self.other_actors [0], self._other_actor_stop_in_front_intersection))

# stop vehicle
stop = StopVehicle(self.other_actors[0], self._other_actor_max_brake)

# end condition
endcondition = py_trees.composites.Parallel("Waiting for end position",
policy=py_trees.common.ParallelPolicy.
SUCCESS_ON_ALL)

endcondition_partl = InTriggerDistanceToVehicle(self.other_actors[0],
self.ego_vehicles[0],
distance=20,
name="FinalDistance")

endcondition_part2 = StandStill(self.ego_vehicles[0], name="StandStill", duration=1)

endcondition.add_child(endcondition_parti1)
endcondition.add_child(endcondition_part2)

# Build behavior tree

sequence = py_trees.composites.Sequence("Sequence Behavior")
sequence.add_child(driving_to_next_intersection)
sequence.add_child (stop)

sequence.add_child (endcondition)
sequence.add_child (ActorDestroy (self.other_actors [0]))

return sequence
def _create_test_criteria(self):

Wi

A list of all test criteria will be created that is later used

in parallel behavior tree.
Wi

criteria = []
collision_criterion = CollisionTest(self.ego_vehicles[0])
criteria.append(collision_criterion)
return criteria
def __del__(self):

wnn

Remove all actors upon deletion
W

self.remove_all_actors ()



81 A.1. FOLLOW VEHICLE

253 -class FollowLeadingVehicleWithObstacle (BasicScenario):

254 -

255 - e

256 - This class holds a scenario similar to FollowLeadingVehicle

257 - but there is an obstacle in front of the leading vehicle

258 -

259 - This is a single ego vehicle scenario

260 - W

261 -

262 - timeout = 120 # Timeout of scenario in seconds

263 -

264 - def __init__(self, world, ego_vehicles, config, randomize=False, debug_mode=False,
criteria_enable=True):

265 - W

266 - Setup all relevant parameters and create scenario

267 - e

268 - self._map = CarlaDataProvider.get_map ()

269 - self. _first_actor_location = 25

270 - self._second_actor_location = self._first_actor_location + 41

271 - self._first_actor_speed = 10

272 - self._second_actor_speed = 1.5

273 - self. _reference_waypoint = self._map.get_waypoint (config.trigger_points[0].location)

274 - self. _other_actor_max_brake = 1.0

275 - self._first_actor_transform = None

276 - self._second_actor_transform = None

277 -

278 - super (FollowLeadingVehicleWithObstacle, self).__init__ ("
FollowLeadingVehicleWithObstacle",

279 - ego_vehicles,

280 - config,

281 - world,

282 - debug_mode ,

283 - criteria_enable=
criteria_enable)

284 - if randomize:

285 - self. _ego_other_distance_start = random.randint (4, 8)

286 -

287 - def _initialize_actors(self, config):

288 - e

289 - Custom initialization

290 - e

291 -

292 - first_actor_waypoint, _ = get_waypoint_in_distance(self._reference_waypoint, self.
_first_actor_location)

293 - second_actor_waypoint, _ = get_waypoint_in_distance(self._reference_waypoint, self.
_second_actor_location)

294 - first_actor_transform = carla.Transform(

295 - carla.Location(first_actor_waypoint‘transform.location.x,

296 - first_actor_waypoint.transform.location.y,

297 - first_actor_waypoint.transform.location.z - 500),

298 - first_actor_waypoint.transform.rotation)

299 - self._first_actor_transform = carla.Transform(

300 - carla.Location(first_actor_waypoint.transform.location.x,

301 - first_actor_waypoint.transform.location.y,

302 - first_actor_waypoint.transform.location.z + 1),

303 - first_actor_waypoint.transform.rotation)

304 - yaw_1 = second_actor_waypoint.transform.rotation.yaw + 90

305 - second_actor_transform = carla.Transform(

306 - carla.Location(second_actor_waypoint.transform.location.x,

307 - second_actor_waypoint.transform.location.y,

308 - second_actor_waypoint.transform.location.z - 500),

309 - carla.Rotation(second_actor_waypoint.transform.rotation.pitch, yaw_1,

310 - second_actor_waypoint.transform.rotation.roll))

311 - self._second_actor_transform = carla.Transform(

312 - carla.Location(second_actor_waypoint.transform.location.x,

313 - second_actor_waypoint.transform.location.y,

314 - second_actor_waypoint.transform.location.z + 1),

315 - carla.Rotation(second_actor_waypoint.transform.rotation.pitch, yaw_1,

316 - second_actor_waypoint.transform.rotation.roll))

317 -

318 - first_actor = CarlaDataProvider.request_new_actor (

319 - vehicle.nissan.patrol’, first_actor_transform)

320 - second_actor = CarlaDataProvider.request_new_actor (

321 - vehicle.diamondback.century’, second_actor_transform)

322 -

323 - first_actor.set_simulate_physics(enabled=False)

324 - second_actor.set_simulate_physics(enabled=False)

325 - self.other_actors.append(first_actor)

326 - self.other_actors.append(second_actor)

327

328 def _create_behavior(self):

329 o

330 - The scenario defined after is a "follow leading vehicle" scenario. After

331 - invoking this scenario, it will wait for the user controlled vehicle to
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+ o+ o+ o+

+

enter the start region, then make the other actor to drive towards obstacle.
Once obstacle clears the road, make the other actor to drive towards the
next intersection. Finally, the user-controlled vehicle has to be close
enough to the other actor to end the scenario.

If this does not happen within 60 seconds, a timeout stops the scenario
Creates the enhanced behavior tree for the complex scenario.

# let the other actor drive until next intersection

driving_to_next_intersection = py_trees.composites.Parallel(
"Driving towards Intersection",
policy=py_trees.common.ParallelPolicy.SUCCESS_ON_ONE)

obstacle_clear_road = py_trees.composites.Parallel("Obstalce clearing road",
policy=py_trees.common.
ParallelPolicy.SUCCESS_ON_ONE)
obstacle_clear_road.add_child(DriveDistance(self.other_actors[1], 4))
obstacle_clear_road.add_child(KeepVelocity(self.other_actors[1], self.
_second_actor_speed))

stop_near_intersection = py_trees.composites.Parallel(
"Waiting for end position near Intersection",
policy=py_trees.common.ParallelPolicy.SUCCESS_ON_ONE)
stop_near_intersection.add_child(WaypointFollower (self.other_actors[0], 10))
stop_near_intersection.add_child(InTriggerDistanceToNextIntersection(self.
other_actors [0], 20))

driving_to_next_intersection.add_child(WaypointFollower (self.other_actors[0], self.
_first_actor_speed))
driving_to_next_intersection.add_child(InTriggerDistanceToVehicle (self.other_actors
[11,
self.other_actors

[0l, 15))

# end condition
endcondition = py_trees.composites.Parallel("Waiting for end position",
policy=py_trees.common.ParallelPolicy.
SUCCESS_ON_ALL)
endcondition_partl = InTriggerDistanceToVehicle(self.other_actors[0],
self.ego_vehicles[0],
distance=20,
name="FinalDistance")
endcondition_part2 = StandStill(self.ego_vehicles[0], name="FinalSpeed", duration=1)
endcondition.add_child(endcondition_parti)
endcondition.add_child(endcondition_part2)

# Build behavior tree

sequence = py_trees.composites.Sequence ("Sequence Behavior")

sequence.add_child (ActorTransformSetter (self.other_actors[0], self.
_first_actor_transform))

sequence.add_child (ActorTransformSetter (self.other_actors[1], self.
_second_actor_transform))

sequence.add_child(driving_to_next_intersection)

sequence.add_child(StopVehicle (self.other_actors[0], self._other_actor_max_brake))

sequence.add_child (TimeOut (3))

sequence.add_child(obstacle_clear_road)

sequence.add_child(stop_near_intersection)

sequence.add_child(StopVehicle (self.other_actors[0], self._other_actor_max_brake))

sequence.add_child (endcondition)

sequence.add_child (ActorDestroy (self.other_actors [0]))

sequence.add_child (ActorDestroy (self.other_actors[1]))

# Initial actor placement

sequence = py_trees.composites.Sequence ("ComplexFollowLeadingVehicle Scenario")

sequence.add_child (ActorTransformSetter (self._leading_vehicle, self._leading_vehicle.
get_transform()))

sequence.add_child (ActorTransformSetter (self. _parked_vehicle, self._parked_vehicle.
get_transform()))

sequence.add_child(ActorTransformSetter(self._pedestrian, self._pedestrian.
get_transform()))

sequence.add_child(ActorTransformSetter(self._dynamic_vehicle, self._dynamic_vehicle.
get_transform()))

# --- Leading Vehicle Driving Behavior ---
leading_vehicle_driving = py_trees.composites.Parallel(
"LeadingVehicleDrivingToIntersection", policy=py_trees.common.ParallelPolicy.
SUCCESS_ON_ONE
)

leading_vehicle_driving.add_child(WaypointFollower (self._leading_vehicle, self.
_leading_vehicle_speed))
# Trigger when leading vehicle is close enough to its intended stop point (next
intersection)
leading_vehicle_driving.add_child(InTriggerDistanceToLocation (
self._leading_vehicle, self._next_intersection_waypoint.transform.location,
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self._leading_actor_stop_in_front_intersection + 10 # Trigger to initiate braking

sequence
))
# --- Pedestrian Crossing Behavior ---
pedestrian_cross_atomic = py_trees.composites.Sequence ("Pedestrian Crossing Sequence
"

# Trigger pedestrian to cross when leading vehicle is sufficiently close
pedestrian_crossing_trigger = TriggerDistanceToLocation(
self._leading_vehicle,
self. _pedestrian.get_location(),
distance=15 # Trigger when leading vehicle is 15m from pedestrian’s spawn point
)
_, pedestrian_end_location = get_crossing_point(self. _map.get_waypoint (self.
_pedestrian.get_location()))
pedestrian_cross_atomic.add_child(pedestrian_crossing_trigger)
pedestrian_cross_atomic.add_child(PedestrianWalk(self._pedestrian,
pedestrian_end_location.x,
pedestrian_end_location.y,
self._pedestrian_speed))
pedestrian_cross_atomic.add_child(StandStill(self._pedestrian, name="PedestrianStops
", duration=2)) # Stand still after crossing

# --- Traffic Light Control Behavior ---
traffic_light_behavior = py_trees.composites.Sequence("Traffic Light Control")
if self._traffic_light:
traffic_light_approach_trigger = TriggerDistanceToLocation(
self._leading_vehicle, self._next_intersection_waypoint.transform.location,
distance=self. _traffic_light_state_change_trigger_distance
)
traffic_light_behavior.add_child(traffic_light_approach_trigger)
traffic_light_behavior.add_child(SetTrafficLightState(self._traffic_light, carla.
TrafficLightState.Red))
traffic_light_behavior.add_child(TimeOut (5)) # Stay red for 5 seconds
traffic_light_behavior.add_child(SetTrafficLightState(self._traffic_light, carla.
TrafficLightState.Green))
else:
traffic_light_behavior.add_child(py_trees.behaviours.Success("No Traffic Light to
Control")) # Placeholder if no traffic light

# --- Combine all dynamic elements leading up to the stop ---
mid_scenario_complexities = py_trees.composites.Parallel(

"MidScenarioComplexities", policy=py_trees.common.ParallelPolicy.SUCCESS_ON_ALL
)
mid_scenario_complexities.add_child(leading_vehicle_driving) # Leading vehicle drives
mid_scenario_complexities.add_child(pedestrian_cross_atomic) # Pedestrian crosses
mid_scenario_complexities.add_child(traffic_light_behavior) # Traffic light changes

# --- Leading Vehicle Final Stop ---
leading_vehicle_stop_condition = InTriggerDistanceToLocation (
self._leading_vehicle, self._next_intersection_waypoint.transform.location,
self._leading_actor_stop_in_front_intersection
)
leading_vehicle_final_stop = py_trees.composites.Sequence("LeadingVehicleFinalStop")
leading_vehicle_final_stop.add_child(leading_vehicle_stop_condition)
leading_vehicle_final_stop.add_child(StopVehicle(self._leading_vehicle, self.
_leading_actor_max_brake))

# --- End Condition for Ego Vehicle ---
end_condition = py_trees.composites.Parallel("Waiting for Ego End Position",
policy=py_trees.common.ParallelPolicy.

SUCCESS_ON_ALL)

end_condition.add_child(InTriggerDistanceToVehicle(

self._leading_vehicle, self.ego_vehicles[o], distance=10, name="

FinalDistanceToLeading"))

end_condition.add_child(StandStill(self.ego_vehicles[0], name="EgoStandStill",
duration=2))

# --- Build the full behavior tree ---

sequence.add_child(mid_scenario_complexities) # All parallel challenges (LV driving,
pedestrian, traffic light)

sequence.add_child(leading_vehicle_final_stop) # Leading vehicle stops based on
condition

sequence.add_child(end_condition) # Ego must stop behind

sequence.add_child (ActorDestroy(self._leading_vehicle))

sequence.add_child (ActorDestroy(self._parked_vehicle))

sequence.add_child (ActorDestroy(self._pedestrian))

sequence.add_child (ActorDestroy(self._dynamic_vehicle)) # Clean up dynamic vehicle

return sequence

-296,9 +268,17 @@ class FollowLeadingVehicleWithUbstacle(BasicScenario):
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470 e

471 criteria = []

472

473 - collision_criterion = CollisionTest(self.ego_vehicles[0])

474 + collision_ego_leading = CollisionTest(self.ego_vehicles[0], self._leading_vehicle,
name="EgoLeadingCollision")

475 + collision_ego_parked = CollisionTest (self.ego_vehicles[0], self._parked_vehicle, name
="EgoParkedCollision")

476 + collision_ego_pedestrian = CollisionTest(self.ego_vehicles[0], self._pedestrian, name
="EgoPedestrianCollision")

477 + collision_ego_dynamic = CollisionTest(self.ego_vehicles[0], self._dynamic_vehicle,
name="EgoDynamicCollision")

478 + collision_leading_pedestrian = CollisionTest(self‘_leading_vehicle, self._pedestrian,
name="LeadingPedestrianCollision")

479

480 - criteria.append(collision_criterion)

481 + criteria.append(collision_ego_leading)

482 + criteria.append(collision_ego_parked)

483 + criteria.append(collision_ego_pedestrian)

484 + criteria.append(collision_ego_dynamic)

485 + criteria.append(collision_leading_pedestrian)

486

487 return criteria

488

489 @@ -306,4 +286,4 @@ class FollowLeadingVehicleWithObstacle(BasicScenario):
490 wun

491 Remove all actors upon deletion
492 wun

493 - self.remove_all_actors ()

494 + self.remove_all_actors ()

495 \ No newline at end of file

Listing A.1: The diff of the initial LLM-enhanced Follow vehicle scenario,
highlighting how the LLM enhanced the scenario.

A.1.2 Strictly adhering to the Carla API

1 diff --git a/srunner/scenarios/follow_leading_vehicle.py b/srunner/scenarios/
follow_leading_vehicle.py
index 5f60061..2117ecae 100644
--- a/srunner/scenarios/follow_leading_vehicle.py
+++ b/srunner/scenarios/follow_leading_vehicle.py
@@ -6,14 +6,19 @@
# For a copy, see <https://opensource.org/licenses/MIT>.

© 00~ U ks WN

-Follow leading vehicle scenario:
10 +Enhanced Follow leading vehicle scenario:

12 The scenario realizes a common driving behavior, in which the

13 user-controlled ego vehicle follows a leading car driving down

14 -a given road. At some point the leading car has to slow down and

15 +a given road. This enhanced version introduces more complexity:

16 +1. A pedestrian crosses the road in front of the leading vehicle, forcing it

17 + to react and slow down/stop unexpectedly.

18 +2. A parked vehicle partially obstructs the road near the final stopping point,
19 + decreasing visibility and narrowing the path.

20 +At some point, the leading car has to slow down and

21 finally stop. The ego vehicle has to react accordingly to avoid

22 -a collision. The scenario ends either via a timeout, or if the ego

23 -vehicle stopped close enough to the leading vehicle

24 +a collision and navigate the increased complexity. The scenario ends either via a timeout, or
if the ego

25 +vehicle stopped close enough to the leading vehicle.

26  mnw

28 import random
29 @@ -27,7 +32,8 @@ from srunner.scenariomanager.scenarioatomics.atomic_behaviors import (
ActorTrans

30 ActorDestroy,

31 KeepVelocity,

32 StopVehicle,

33 - WaypointFollower)
34 + WaypointFollower ,
35 + WalkToLocation)

36 from srunner.scenariomanager.scenarioatomics.atomic_criteria import CollisionTest
37 from srunner.scenariomanager.scenarioatomics.atomic_trigger_conditions import (
InTriggerDistanceToVehicle,

InTriggerDistanceToNextIntersection,
39 @@ -41,13 +47,13 @@ from srunner.tools.scenario_helper import get_waypoint_in_distance
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A.1. FOLLOW VEHICLE

class FollowLeadingVehicle(BasicScenario):

ee

+ o+ o+ o+

ee

+

This class holds everything required for a simple "Follow a leading vehicle"

scenario involving two vehicles. (Traffic Scenario 2)

This class holds everything required for a complex "Follow a leading vehicle"
scenario involving two vehicles, a pedestrian, and a parked car. (Traffic Scenario 2)

This is a single ego vehicle scenario

This is a single ego vehicle scenario, with enhanced complexity.
W

timeout = 120 # Timeout of scenario in seconds
timeout = 180 # Increased timeout of scenario in seconds for more complexity
def __init__(self, world, ego_vehicles, config, randomize=False, debug_mode=False,

criteria_enable=True,
timeout=60) :

-58,16 +64,22 Q@@ class FollowLeadingVehicle (BasicScenario):

self._map = CarlaDataProvider.get_map ()

self._first_vehicle_location = 25

self._first_vehicle_location = 25 # Distance of leading vehicle from ego’s trigger
point

self._first_vehicle_speed = 10

self. _reference_waypoint = self._map.get_waypoint(config.trigger_points[0].location)

self._other_actor_max_brake = 1.0

self._other_actor_stop_in_front_intersection = 20

self._other_actor_transform = None

self._other_actor_stop_in_front_intersection = 20 # Distance from intersection for
leading vehicle to stop

self._leading_vehicle_transform = None # Store leading vehicle’s initial transform

# New parameters for added complexity

self._pedestrian_start_distance = self._first_vehicle_location + 15 # Pedestrian
appears 15m ahead of leading car’s start

self._parked_vehicle_distance = self._first_vehicle_location + 30 # Parked car
appears 30m ahead of leading car’s start

self._parked_vehicle_lateral_offset = 3.0 # Offset from center of lane for parked car

# Timeout of scenario in seconds
self.timeout = timeout
self.timeout = timeout if timeout else self.timeout

super (FollowLeadingVehicle, self).__init__("FollowVehicle",

super (FollowLeadingVehicle, self).__init__("FollowVehicleComplex", # Changed scenario
name
ego_vehicles,
config,
world,

-76,216 +88,114 @Q@ class FollowLeadingVehicle(BasicScenario):

if randomize:
self._ego_other_distance_start = random.randint (4, 8)

Example code how to randomize start location

distance = random.randint (20, 80)

new_location, _ = get_location_in_distance(self.ego_vehicles[0], distance)
waypoint = CarlaDataProvider.get_map().get_waypoint (new_location)
waypoint.transform.location.z += 39

self.other_actors [0].set_transform(waypoint.transform)

Further randomization of speeds, distances, pedestrian timing could be added

T N

here.

def _initialize_actors(self, config):

wun

Custom initialization

Custom initialization of leading vehicle, pedestrian, and parked vehicle.

wun

# 1. Leading Vehicle

waypoint, _ = get_waypoint_in_distance(self._reference_waypoint, self.
_first_vehicle_location)

transform = waypoint.transform

transform.location.z += 0.5

first_vehicle = CarlaDataProvider.request_new_actor (’vehicle.nissan.patrol’,
transform)

self.other_actors.append(first_vehicle)

self._leading_vehicle_transform = transform # Store for potential
ActorTransformSetter later if needed

# 2. Pedestrian
ped_waypoint, _ = get_waypoint_in_distance(self._reference_waypoint, self.
_pedestrian_start_distance)
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# Calculate pedestrian spawn point on the right sidewalk (relative to vehicle’s

forward direction)

ped_spawn_location = ped_waypoint.transform.location
# Move pedestrian to the right of the lane, assuming 1.0m for sidewalk
ped_spawn_location += ped_waypoint.transform.get_right_vector() * (ped_waypoint.

lane_width / 2.0 + 1.0)

ped_spawn_location.z += 0.5 # Adjust Z to be on the ground

ped_transform = carla.Transform(ped_spawn_location, ped_waypoint.transform.rotation)
pedestrian = CarlaDataProvider.request_new_actor (’walker.pedestrian.0001’,

ped_transform)

self.other_actors.append(pedestrian)

# 3. Parked Vehicle
parked_waypoint , = get_waypoint_in_distance(self._reference_waypoint, self.

_parked_vehicle_distance)

# Parked vehicle on the side of the road, slightly obstructing vision/lane
parked_transform = carla.Transform(
carla.Location(parked_waypoint.transform.location.x,
parked_waypoint.transform.location.y + self.

_parked_vehicle_lateral_offset, # Offset to the side

parked_waypoint.transform.location.z + 0.1), # Ensure it’s on the

ground

parked_waypoint.transform.rotation

parked_vehicle = CarlaDataProvider.request_new_actor (’vehicle.volkswagen.t2’,

parked_transform)

parked_vehicle.set_autopilot (False) # Ensure it doesn’t move
parked_vehicle.set_simulate_physics(False) # Optional, prevents accidental movement
self.other_actors.append(parked_vehicle)

_create_behavior (self):

Wi

The scenario defined after is a "follow leading vehicle" scenario. After
invoking this scenario, it will wait for the user controlled vehicle to
enter the start region, then make the other actor to drive until reaching
the next intersection. Finally, the user-controlled vehicle has to be close
enough to the other actor to end the scenario.

If this does not happen within 60 seconds, a timeout stops the scenario

# let the other actor drive until next intersection

driving_to_next_intersection = py_trees.composites.Parallel(
"DrivingTowardsIntersection",
policy=py_trees.common.ParallelPolicy.SUCCESS_ON_ONE)

driving_to_next_intersection.add_child(WaypointFollower (self.other_actors[0], self.

_first_vehicle_speed))

driving_to_next_intersection.add_child(InTriggerDistanceTcNextIntersection(
self.other_actors [0], self._other_actor_stop_in_front_intersection))

# stop vehicle
stop = StopVehicle(self.other_actors[0], self._other_actor_max_brake)

# end condition
endcondition = py_trees.composites.Parallel("Waiting for end position",
policy=py_trees.common.ParallelPolicy.

SUCCESS_ON_ALL)

endcondition_partl = InTriggerDistanceToVehicle(self.other_actors([0],

self.ego_vehicles[0],

distance=20,

name="FinalDistance")
endcondition_part2 = StandStill(self.sgo_vehicles[o], name="StandStill", duration=1)
endcondition.add_child(endcondition_parti)
endcondition.add_child(endcondition_part2)

# Build behavior tree

sequence = py_trees.composites.Sequence ("Sequence Behavior")
sequence.add_child(driving_to_next_intersection)
sequence.add_child (stop)

sequence.add_child(endcondition)

sequence .add_child (ActorDestroy (self.other_actors[0]))

return sequence
_create_test_criteria(self):

A list of all test criteria will be created that is later used

in parallel behavior tree.
W

criteria = []

collision_criterion = CollisionTest(self.ego_vehicles[0])



87 A.1. FOLLOW VEHICLE

188 -

189 - criteria.append(collision_criterion)

190 -

191 - return criteria

192 -

193 - def __del__(self):

194 - e

195 - Remove all actors upon deletion

196 - o

197 - self .remove_all_actors ()

198 -

199 -

200 -class FollowLeadingVehicleWithObstacle(BasicScenario):

201 -

202 - W

203 - This class holds a scenario similar to FollowLeadingVehicle

204 - but there is an obstacle in front of the leading vehicle

205 -

206 - This is a single ego vehicle scenario

207 - v

208 -

209 - timeout = 120 # Timeout of scenario in seconds

210 -

211 - def __init__(self, world, ego_vehicles, config, randomize=False, debug_mode=False,
criteria_enable=True):

212 - e

213 - Setup all relevant parameters and create scenario

214 - o

215 - self. _map = CarlaDataProvider.get_map ()

216 - self._first_actor_location = 25

217 - self._second_actor_location = self._first_actor_location + 41

218 - self._first_actor_speed = 10

219 - self._second_actor_speed = 1.5

220 - self. _reference_waypoint = self._map.get_waypoint (config.trigger_points[0].location)

221 - self._other_actor_max_brake = 1.0

222 - self._first_actor_transform = None

223 - self._second_actor_transform = None

224 -

225 - super (FollowLeadingVehicleWithObstacle, self).__init__ ("
FollowLeadingVehicleWithObstacle",

226 - ego_vehicles,

227 - config,

228 - world,

229 - debug_mode ,

230 - criteria_enable=
criteria_enable)

231 - if randomize:

232 - self._ego_other_distance_start = random.randint (4, 8)

233 -

234 - def _initialize_actors(self, config):

235 - e

236 - Custom initialization

237 - n

238 -

239 - first_actor_waypoint, _ = get_waypoint_in_distance(selfA_reference_waypoint, self.
_first_actor_location)

240 - second_actor_waypoint, _ = get_waypoint_in_distance(self._reference_waypoint, self.
_second_actor_location)

241 - first_actor_transform = carla.Transform(

242 - carla.Location(first_actor_waypoint.transform.location.x,

243 - first_actor_waypoint.transform.location.y,

244 - first_actor_waypoint.transform.location.z - 500),

245 - first_actor_waypoint.transform.rotation)

246 - self._first_actor_transform = carla.Transform(

247 - carla.Location(first_actor_waypoint.transform.location.x,

248 - first_actor_waypoint.transform.location.y,

249 - first_actor_waypoint.transform.location.z + 1),

250 - first_actor_waypoint.transform.rotation)

251 - yaw_1 = second_actor_waypoint.transform.rotation.yaw + 90

252 - second_actor_transform = carla.Transform(

253 - carla.Location(second_actor_waypoint.transform.location.x,

254 - second_actor_waypoint.transform.location.y,

255 - second_actor_waypoint.transform.location.z - 500),

256 - carla.Rotation(second_actor_waypoint.transform.rotation.pitch, yaw_1,

257 - second_actor_waypoint.transform.rotation.roll))

258 - self._second_actor_transform = carla.Transform(

259 - carla.Location(second_actor_waypoint.transform.location.x,

260 - second_actor_waypoint.transform.location.y,

261 - second_actor_waypoint.transform.location.z + 1),

262 - carla.Rotation(second_actor_waypoint.transform.rotation.pitch, yaw_1,

263 - second_actor_waypoint.transform.rotation.roll))

264 -

265 - first_actor = CarlaDataProvider.request_new_actor (

266 - ’vehicle.nissan.patrol’, first_actor_transform)



267

285
286
287
288
289
290
291
292

293
294

295
296
297
298
299
300

301
302

303

318
319
320
321

322
323
324

325
326
327
328
329

330
331
332
333
334
335
336
337
338
339

APPENDIX A. SCENARIO FILE DIFFS 88

R

+ o+ o+ o+

+ o+ o+

+ o+ o+ o+

R T S A R

second_actor = CarlaDataProvider.request_new_actor(
>vehicle.diamondback.century’, second_actor_transform)

first_actor.set_simulate_physics (enabled=False)
second_actor.set_simulate_physics (enabled=False)
self.other_actors.append(first_actor)
self.other_actors.append(second_actor)

_create_behavior (self):

wun

The scenario defined after is a "follow leading vehicle" scenario. After
invoking this scenario, it will wait for the user controlled vehicle to
enter the start region, then make the other actor to drive towards obstacle.
Once obstacle clears the road, make the other actor to drive towards the
next intersection. Finally, the user-controlled vehicle has to be close
enough to the other actor to end the scenario.

If this does not happen within 60 seconds, a timeout stops the scenario
Wi

# let the other actor drive until next intersection

driving_to_next_intersection = py_trees.compositeSAParallel(
"Driving towards Intersection",
policy=py_trees.common.ParallelPolicy.SUCCESS_ON_ONE)

obstacle_clear_road = py_trees.composites.Parallel ("Obstalce clearing road",
policy=py_trees.common.

ParallelPolicy.SUCCESS_ON_ONE)

obstacle_clear_road.add_child(DriveDistance (self.other_actors[1], 4))
obstacle_clear_road.add_child(KeepVelocity (self.other_actors([1], self.

_second_actor_speed))

stop_near_intersection = py_trees.composites.Parallel(
"Waiting for end position near Intersection",
policy=py_trees.common.ParallelPolicy.SUCCESS_ON_ONE)
stop_near_intersection.add_child(WaypointFollower (self.other_actors[0], 10))
stop_near_intersection.add_child(InTriggerDistanceToNextIntersection(self.

other_actors [0], 20))

driving_to_next_intersection.add_child(WaypointFollower (self.other_actors[0], self.

_first_actor_speed))

[11

[ol

driving_to_next_intersection.add_child(InTriggerDistanceToVehicle (self.other_actors
self.other_actors
, 15))

# end condition
The scenario defined after is an enhanced "follow leading vehicle" scenario.

It integrates a pedestrian crossing and a parked vehicle.
Wi

# 1. Leading vehicle drives, potentially reacting to pedestrian

leading_vehicle_driving = py_trees.composites.Parallel(
"LeadingVehicleDrivingAndPedestrianCrossing",
policy=py_trees.common.ParallelPolicy.SUCCESS_ON_ALL)

# Leading vehicle follows waypoints
leading_vehicle_follower = WaypointFollower (self.other_actors[0], self.

_first_vehicle_speed) # self.other_actors[0] is leading vehicle

# Pedestrian crosses the road (self.other_actors([1])
# Calculate target location for pedestrian on the left sidewalk

ped_waypoint_for_crossing, _ = get_waypoint_in_distance(self._reference_waypoint,
self._pedestrian_start_distance)

ped_target_location = ped_waypoint_for_crossing.transform.location

# Move pedestrian to the left of the lane, assuming 1.0m for sidewalk

ped_target_location -= ped_waypoint_for_crossing.transform.get_right_vector() * (

ped_waypoint_for_crossing.lane_width / 2.0 + 1.0)

ped_target_location.z += 0.5
pedestrian_cross_behavior = WalkToLocation(self.other_actors[1], ped_target_location)

# Introduce a delay for pedestrian to start crossing AFTER leading vehicle has

started moving.

pedestrian_start_sequence = py_trees.composites.Sequence("PedestrianStartSequence")
pedestrian_start_sequence.add_child(TimeOut (5)) # Wait 5 seconds after scenario start
pedestrian_start_sequence.add_child(pedestrian_cross_behavior)

# Leading vehicle drives while the pedestrian sequence is active.

# Carla’s AI for vehicles should automatically react to the pedestrian.
leading_vehicle_driving.add_child(leading_vehicle_follower)
leading_vehicle_driving.add_child(pedestrian_start_sequence)

# Wait for leading vehicle to be close to the intersection to decide to stop (its

final stop)
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leading_vehicle_at_intersection_trigger = InTriggerDistanceToNextIntersection(
self.other_actors [0], self. _other_actor_stop_in_front_intersection
)
# Sequence for the leading vehicle’s overall journey: drive, reach intersection, then
stop
leading_vehicle_overall_journey = py_trees.composites.Sequence("LeadingVehicleJourney
D)

leading_vehicle_overall_journey.add_child(leading_vehicle_driving) # Includes
pedestrian interaction

leading_vehicle_overall_journey.add_child(leading_vehicle_at_intersection_trigger)

leading_vehicle_overall_journey.add_child(StopVehicle(self.other_actors[0], self.
_other_actor_max_brake)) # Stops at intersection

# 2. End condition for Ego Vehicle
# The ego vehicle must stop close enough to the leading vehicle and stand still.
endcondition = py_trees.composites.Parallel("Waiting for end position",
policy=py_trees.common.ParallelPolicy.
SUCCESS_ON_ALL)

endcondition_partl = InTriggerDistanceToVehicle(self.other_actors[0],
endcondition_partl = InTriggerDistanceToVehicle(self.other_actors[0], # Leading
vehicle

self.ego_vehicles[0],
distance=20,
distance=10, # Reduced distance for
tighter following
name="FinalDistance")
endcondition_part2 = StandStill(self.ego_vehicles[0], name="FinalSpeed", duration=1)
endcondition_part2 = StandStill(self.ego_vehicles[0], name="StandStill", duration=2)
# Increased duration for stand still
endcondition.add_child(endcondition_partl)
endcondition.add_child(endcondition_part2)

# Build behavior tree

sequence = py_trees.composites.Sequence("Sequence Behavior")

sequence.add_child (ActorTransformSetter (self.other_actors[0], self.
_first_actor_transform))

sequence.add_child (ActorTransformSetter (self.other_actors[1], self.
_second_actor_transform))

sequence.add_child(driving_to_next_intersection)

sequence.add_child (StopVehicle (self.other_actors[0], self._other_actor_max_brake))

sequence.add_child (TimeOut (3))

sequence.add_child (obstacle_clear_road)

sequence.add_child(stop_near_intersection)

sequence.add_child(StopVehicle (self.other_actors[0], self._other_actor_max_brake))

# Build overall behavior tree

sequence = py_trees.composites.Sequence("ComplexFollowVehicleBehavior")

sequence.add_child(leading_vehicle_overall_journey)

sequence.add_child (endcondition)

sequence.add_child (ActorDestroy(self.other_actors[0]))

sequence.add_child (ActorDestroy(self.other_actors[1]))

# Clean up all actors at the end

sequence.add_child (ActorDestroy(self.other_actors[0], "DestroyLeadingVehicle"))

sequence.add_child (ActorDestroy(self.other_actors[1], nam DestroyPedestrian"))

sequence.add_child (ActorDestroy (self.other_actors[2], name="DestroyParkedVehicle")) #
self.other_actors[2] is parked vehicle

return sequence

-297,6 +207,10 @@ class FollowLeadingVehicleWithObstacle (BasicScenario):

criteria = []

collision_criterion = CollisionTest(self.ego_vehicles[0])

# Additional criteria could be added here, e.g.,

# - 0ffRoadTest: if the parked car forces the ego off the road.

# - RunningRedLightTest: if there’s an intersection with a traffic light.
# - DrivenDistanceTest: to ensure progress.

criteria.append(collision_criterion)

-306,4 +220,4 Q@@ class FollowLeadingVehicleWithObstacle (BasicScenario):

Remove all actors upon deletion

self.remove_all_actors ()
self .remove_all_actors ()

\ No newline at end of file

Listing A.2: The diff of the iterated, more strict LLM-enhanced Follow vehicle
scenario.
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A.2 Accident

A.2.1 Minimal changes

This scenario is outlined in Section 6.1.2 7?** and analysed in Section 7.1.4 7?-%*,

diff --git a/srunner/scenarios/route_obstacles.py b/srunner/scenarios/route_obstacles.py
index 8ala3dc..86892b7 100644
--- a/srunner/scenarios/route_obstacles.py
+++ b/srunner/scenarios/route_obstacles.py
@@ -66,13 +66,17 @@ class Accident (BasicScenario):
self. _map = CarlaDataProvider.get_map ()
self.timeout = timeout

+ # Original distances
self._first_distance = 10
self._second_distance = 6

o
+ # NEW: Third accident vehicle distance, increasing complexity
+ self._third_distance = 6

self._trigger_distance = 50

self._end_distance = 50

self. _wait_duration = 5

self._offset = 0.6
+ self._offset = 0.6 # Original offset for accident vehicles

self._lights = carla.VehicleLightState.Speciall | carla.VehicleLightState.Special2 |
carla.VehicleLightState.Position

@@ -84,6 +88,70 @@ class Accident(BasicScenario):

self._max_speed = get_value_parameter (config, ’speed’, float, 60)
self._scenario_timeout = 240
+ # NEW: Pedestrian parameters, enhancing dynamic complexity
+ self._pedestrian_bps = [ "NOTE: Removed for brevity in the thesis" ]
+
+ self._pedestrian_speed = get_value_parameter (config, ’pedestrian_speed’, float, 1.5)
# 5.4 km/h
+ self._pedestrian_drive_distance = get_value_parameter(config, o
pedestrian_drive_distance’, float, 10)
i self._pedestrian_offset = 0.9 # Further to the side, potentially on sidewalk, for
spawning
+ self._pedestrian_trigger_distance = 20 # Smaller trigger for pedestrian start
+
+ # NEW: Traffic cone parameters, enhancing static obstruction
+ self._cone_offset = 0.8 # Slightly more off the lane than accident cars, but less
than pedestrian
+

super (). __init__(
"Accident", ego_vehicles, config, world, randomize, debug_mode, criteria_enable=
criteria_enable)

@@ -178,37 +246,125 @@ class Accident (BasicScenario):

second_vehicle_wp = self._move_uaypoint_forward(self._first_vehicle_wp, self .
_second_distance)
second_actor = self._spawn_obstacle(second_vehicle_wp, ’vehicle.*’, True)
- self._accident_wp = second_vehicle_wp
= self._end_wp = self._move_waypoint_forward(second_vehicle_wp, self._end_distance)

# Set its initial conditions
second_actor.apply_control (carla.VehicleControl (hand_brake=True))
self.other_actors.append(second_actor)

+ # NEW: Create a third vehicle that has been in the accident, increasing obstruction

g third_vehicle_wp = self._move_waypoint_forward(second_vehicle_wp, self.
_third_distance)

+ third_actor = self._spawn_obstacle(third_vehicle_wp, >vehicle.*’, True)

o

+ # Set its initial conditions

+ third_actor.apply_control (carla.VehicleControl (hand_brake=True))

+ self.other_actors.append(third_actor)

+

+ self._accident_wp = third_vehicle wp # Update the main accident waypoint to the last
car

i self._end_wp = self._move_waypoint_forward(third_vehicle_wp, self._end_distance)

+

+ # NEW: Spawn traffic cones around the accident, further narrowing the path

+ cone_ref_wps = [

+ self. _move_waypoint_forward(self._accident_wp, -self._first_distance - self.

_second_distance - 2), # Before first car
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self. _first_vehicle_wp,
self. _move_waypoint_forward(self._first_vehicle_wp, self._second_distance / 2), #
In between first and second

second_vehicle_wp,

self. _move_waypoint_forward(second_vehicle_wp, self._third_distance / 2), # In
between second and third

third_vehicle_wp,

self. _move_waypoint_forward(third_vehicle_wp, 2) # After third car

]
for i, wp in enumerate(cone_ref_wps):
displacement = self._cone_offset * wp.lane_width / 2
r_vec = wp.transform.get_right_vector ()
if self._direction == ’left’:
r_vec *= -1
# Make a copy of the transform!
cone_transform = carla.Transform(wp.transform.location, wp.transform.rotation)

cone_transform.location += carla.Location(x=disp1acement * r_vec.x, y=
displacement * r_vec.y, z=0.1)

# cone_blueprint = ’static.prop.construction.trafficcone01’

cone_blueprint = ’static.prop.trafficcone01’ # Or any available
propcone_blueprint = ’static.prop.construction.trafficcone01’

cone_actor = CarlaDataProvider.request_new_actor (cone_blueprint, cone_transform)

if not cone_actor:

raise ValueError (f"Couldn’t spawn cone {il}")
cone_actor.set_simulate_physics(False)
self.other_actors.append(cone_actor)

# NEW: Spawn a pedestrian near the accident, adding dynamic interaction

pedestrian_spawn_wp = self._move_waypoint_forward(self._first_vehicle_wp, self.
_second_distance / 2) # In between first and second accident cars

displacement = self._pedestrian_offset * pedestrian_spawn_wp.lane_width / 2 # Further
to the side, simulate sidewalk

r_vec = pedestrian_spawn_wp.transform.get_right_vector()

if self._direction == ’left’:

r_vec *= -1
pedestrian_transform = pedestrian_spawn_wp.transform

pedestrian_transform.location += carla.Location(x=displacement * r_vec.x, y=
displacement * r_vec.y, z=0.1) # Pedestrian on ground

# pedestrian_transform.location.z = 0.5

rng = CarlaDataProvider.get_random_seed ()

ped_blueprint = rng.choice(self._pedestrian_bps)

pedestrian_actor = CarlaDataProvider.request_new_actor (ped_blueprint,

pedestrian_transform)
if not pedestrian_actor:
#raise ValueError ("Couldn’t spawn pedestrian actor")
print ("Couldn’t spawn pedestrian actor")
return
pedestrian_actor.set_simulate_physics(True) # Pedestrians are typically simulated
self.other_actors.append(pedestrian_actor)

# Define pedestrian target location (slightly moving towards the road to be more
intrusive)
ped_target_wp = self._move_waypoint_forward(pedestrian_spawn_wp, self.
_pedestrian_drive_distance)
self._pedestrian_target_loc = ped_target_wp.transform.location
# Shift target location slightly into the lane for more challenge
if self._direction == ’right’:
self. _pedestrian_target_loc.y -= 0.5 # Shift left (towards road center) for right
-hand traffic
else: # ’left’
self . _pedestrian_target_loc.y += 0.5 # Shift right (towards road center) for left
-hand traffic

def _create_behavior (self):

W

The vehicle has to drive the reach a specific point but an accident is in the middle
of the road,

blocking its route and forcing it to lane change.

The vehicle has to drive to reach a specific point but an accident is in the middle
of the road,

blocking its route and forcing it to lane change. Enhanced with more complexity.

root = py_trees.composites.Sequence(name="Accident")

if self.route_mode:
total_dist = self. _distance + self._first_distance + self._second_distance + 20
# Update total_dist for LeaveSpaceInFront to include the new third vehicle
total_dist = self. _distance + self._first_distance + self._second_distance + self

._third_distance + 20
root.add_child(LeaveSpaceInFront (total_dist))

end_condition = py_trees.composites.Parallel(policy=py_trees.common.ParallelPolicy.
SUCCESS_ON_ONE)
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end_condition.add_child(ScenarioTimeout (self._scenario_timeout, self.config.name))
end_condition.add_child(WaitUntilInFrontPosition(self.ego_vehicles[0], self._end_wp.
transform, False))
# Main parallel behavior for the active part of the scenario
main_behavior_parallel = py_trees.composites.Parallel(
policy=py_trees.common.ParallelPolicy.SUCCESS_ON_ONE, name="Main Behavior
Parallel")

main_behavior_parallel.add_child(ScenarioTimeout (self._scenario_timeout, self.config.
name))

behavior = py_trees.composites.Sequence ()
behavior.add_child (InTriggerDistanceToLocation(
# 1. Ego-centric behavior (triggers speed/waiting)
ego_trigger_behavior = py_trees.composites.Sequence(name="Ego Trigger Behavior")
ego_trigger_behavior.add_child(InTriggerDistanceToLocation(
self.ego_vehicles[o], self._first_vehicle_wp.transform.location, self.
_trigger_distance))
behavior.add_child(Idle(self._wait_duration))
ego_trigger_behavior.add_child(Idle(self._wait_duration))
if self.route_mode:
behavior.add_child (SetMaxSpeed (self._max_speed))
behavior.add_child(WaitForever ())

end_condition.add_child(behavior)
root.add_child(end_condition)
ego_trigger_behavior.add_child(SetMaxSpeed(self._max_speed))
ego_trigger_behavior.add_child(WaitForever()) # This ensures ego behavior lasts until
something else finishes the parallel

main_behavior_parallel.add_child(ego_trigger_behavior)

# 2. Pedestrian movement behavior (last actor added is the pedestrian)
pedestrian_actor = self.other_actors[-1]
if pedestrian_actor.type_id.startswith(’walker’): # Ensure it’s actually a walker
type
pedestrian_behavior = py_trees.composites.Sequence(name="Pedestrian Movement")
# Pedestrian starts moving when ego is closer to its location
pedestrian_behavior.add_child(InTriggerDistanceToLocation(
self.ego_vehicles[0], pedestrian_actor.get_location(), self.
_pedestrian_trigger_distance))
# BasicAgentBehavior for the pedestrian
pedestrian_behavior.add_child(BasicAgentBehavior (
pedestrian_actor, self._pedestrian_target_loc, target_speed=self.
_pedestrian_speed))
pedestrian_behavior.add_child (HandBrakeVehicle (pedestrian_actor, 1)) # Stop
movement after reaching target (or collision)
pedestrian_behavior.add_child(WaitForever()) # Keep it active, don’t let it stop
the parallel
main_behavior_parallel.add_child(pedestrian_behavior)

# 3. Scenario End Condition (ego reaches a point past the accident)

scenario_end_condition = py_trees.composites.Sequence(name="Scenario End Condition")

scenario_end_condition.add_child(WaitUntilInFrontPosition(self.ego_vehicles[0], self.
_end_wp.transform, False))

main_behavior_parallel.add_child(scenario_end_condition)

root.add_child(main_behavior_parallel)

if self.route_mode:
root.add_child(SetMaxSpeed (0))

Listing A.3: The diff of a minimally LLM-enhanced Accident scenario.

A.2.2 Optimized for jerk

This scenario is also outlined in Section 6.1.27?* and analysed in Sec-
tion 7.1.4 P51,

First iteration

diff

--git a/srunner/scenarios/route_obstacles.py b/srunner/scenarios/route_obstacles.py

index 8a0a3dc..fe46632 100644
--- a/srunner/scenarios/route_obstacles.py
+++ b/srunner/scenarios/route_obstacles.py

ee

-69,9 +69,9 @@ class Accident(BasicScenario):

self._first_distance = 10
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self._second_distanc

self._trigger_distan
self. _trigger_distan
self._end_distance =
self._wait_duration
self. _wait_duration
self. _offset = 0.6

self._lights = carla

e =6

ce = 50

ce = 20 # Decreased to force sharper reactions
50

=5

= 1 # Decreased to allow less reaction time

.VehicleLightState.Speciall | carla.VehicleLightState.Special2 |

carla.VehicleLightState.Position
@@ -297,9 +297,9 @@ class ParkedObstacle(BasicScenario):

self._map = CarlaDat
self.timeout = timeo

self. _trigger_distan
self._trigger_distan
self._end_distance =
self._wait_duration
self._wait_duration
self. _offset = 0.7

self._lights = carla

aProvider.get_map ()

ut

ce = 50

ce = 20 # Decreased to force sharper reactions
50

=5

= 1 # Decreased to allow less reaction time

.VehicleLightState.RightBlinker | carla.VehicleLightState.

LeftBlinker | carla.VehicleLightState.Position
@@ -503,13 +503,13 @@ class HazardAtSideLane (BasicScenario):

self._map = CarlaDat
self.timeout = timeo

self. _obstacle_dista
self. _trigger_distan
self. _obstacle_dista
self. _trigger_distan
self._end_distance =
self._extra_space =

self._offset = 0.55
self._wait_duration
self. _offset = 0.8
self. _wait_duration

self._target_locs =

aProvider.get_map ()

ut
nce = 9
ce = 50
nce = 5 # Reduced distance between bicycles for tighter space
ce = 20 # Decreased to force sharper reactions
50
30
=5
# Increased to make bicycles encroach more into the lane

1 # Decreased to allow less reaction time

[1

@@ -517,7 +517,7 @@ class HazardAtSideLane (BasicScenario):

self._distance = get
self._max_speed = ge
self. _bicycle_speed
self._bicycle_speed

Increased bicycle speed

self._bicycle_drive_

float, 50)

self._scenario_timeo

_value_parameter (config, ’distance’, float, 100)
t_value_parameter (config, ’speed’, float, 60)

= get_value_parameter (config, ’bicycle_speed’, float, 10)

= get_value_parameter(config, ’bicycle_speed’, float, 20) #

distance = get_value_parameter(config, ’bicycle_drive_distance’,

ut = 240

@@ -661,7 +661,7 @@ class HazardAtSideLaneTwoWays (HazardAtSideLane):

def __init__(self, world, ego_vehicles, config, randomize=False, debug_mode=False,
criteria_enable=True, timeout=180):
- self._opposite_frequency = get_value_parameter (config, ’frequency’, float, 100)
i self . _opposite_frequency = get_value_parameter (config, ’frequency’, float, 20) #
Increased opposite traffic frequency (lower spawn_dist)
super () . __init__(world, ego_vehicles, config, randomize, debug_mode, criteria_enable,
timeout)

@@ -716,4 +716,4 @@ class HazardAtSideLaneTwoWays (HazardAtSideLane):

+

for actor in self.ot

her_actors:

root.add_child (ActorDestroy (actor))

return root
return root

\ No newline at end of file

Listing A.4: The diff of the jerk-optimized Accident scenario.

Second iteration, with a more strict prompt

diff --git a/srunner/scenarios/route_obstacles.py b/srunner/scenarios/route_obstacles.py
index 8a0a3dc..c37c080 100644
--- a/srunner/scenarios/route_obstacles.py
+++ b/srunner/scenarios/route_obstacles.py
@@ -84,6 +84,11 @@ class Accident(BasicScenario):
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self . _max_speed = get_value_parameter (config, ’speed’, float, 60)
self._scenario_timeout = 240

# Additional parameters for enhancing complexity and jerk

self._creep_distance = get_value_parameter (config, ’creep_distance’, float, 2.0)
self._creep_speed = get_value_parameter (config, ’creep_speed’, float, 1.0) # m/s (3.6
h)

self._lateral_creep_offset = get_value_parameter (config, ’lateral_creep_offset’,

t, 0.5) # meters

super (). __init__(

"Accident", ego_vehicles, config, world, randomize, debug_mode, criteria_enable=

eria_enable)

-199,15 +204,57 @@ class Accident(BasicScenario):

end_condition.add_child(ScenarioTimeout (self._scenario_timeout, self.config.name))
end_condition.add_child(WaitUntilInFrontPosition(self.ego_vehicles[0], self._end_wp.

sform, False))

behavior = py_trees.composites.Sequence ()
behavior.add_child(InTriggerDistanceToLocation(

# Ego’s main behavior sequence: approach, idle, then wait
ego_behavior = py_trees.composites.Sequence ()
ego_behavior.add_child (InTriggerDistanceToLocation (

self.ego_vehicles [0], self._first_vehicle_wp.transform.location, self.

gger_distance))
behavior.add_child(Idle(self._wait_duration))
ego_behavior.add_child(Idle(self. _wait_duration))
if self.route_mode:
behavior.add_child (SetMaxSpeed(self. _max_speed))
behavior.add_child(WaitForever ())
ego_behavior.add_child(SetMaxSpeed(self._max_speed))
ego_behavior.add_child(WaitForever ())

end_condition.add_child(ego_behavior)

# NEW: Behavior for the first accident vehicle to creep forward and laterally
# This will introduce sudden changes in the environment, leading to increased jerk

the ego.

first_actor = self.other_actors[2] # Based on the order of actor initialization

# Calculate target waypoint for longitudinal creep

first_actor_start_wp = self._map.get_waypoint(first_actor.get_location())
creep_target_wp_forward = self._move_waypoint_forward(first_actor_start_wp, self.

ep_distance)

# Calculate the lateral offset for the BasicAgentBehavior.

# This offset is relative to the center of the target waypoint’s lane.

# Initial lateral position of the obstacle (from lane center,

positive to right).

initial_lateral_offset_from_center = self._offset * first_actor_start_wp.lane_width /

if self._direction

negative

furt

furt

_cre

afte

ends

initial_lateral_offset_from_center *= -1

# Desired change to increase blockage and induce jerk.

>left’: # If original placement was on the left, make this

# If ego passes left (direction ’right’), obstacle is on right. To block more, move

her right (increase offset).

# If ego passes right (direction ’left’), obstacle is on left. To block more, move

her left (decrease offset).
target_lateral _offset = initial_lateral_offset_from_center
if self._direction == ’right’:
target_lateral_offset += self._lateral_creep_offset
else: # self._direction == ’left’
target_lateral_offset -= self._lateral_creep_offset
opt_dict_creep = {’offset’: target_lateral_offset}
creep_behavior = py_trees.composites.Sequence(name="First Accident Car Creep")

# Trigger the creep behavior when ego is closer, after initial detection

creep_behavior.add_child(InTriggerDistanceToLocation (

self.ego_vehicles[o], self._first_vehicle_wp.transform.location, self.
_trigger_distance / 2))
creep_behavior.add_child(Idle(self._wait_duration / 2)) # Short idle to ensure ego is
committed
creep_behavior.add_child (HandBrakeVehicle (first_actor, False)) # Release handbrake
# Make the actor creep forward and laterally with BasicAgentBehavior

creep_behavior.add_child(BasicAgentBehavior(

first_actor, creep_target_wp_forward.transform.location,

ep_speed, opt_dict=opt_dict_creep))

target_speed=self.

creep_behavior.add_child (HandBrakeVehicle(first_actor, True)) # Re-apply handbrake

r moving

creep_behavior.add_child(WaitForever ()) # Keep this behavior alive until scenario
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+
+ end_condition.add_child(creep_behavior) # Add this parallel behavior to the scenario
= end_condition.add_child (behavior)

root.add_child(end_condition)

if self.route_mode:

Listing A.5: The diff of the jerk-optimized Accident scenario with stricter
specification.



Appendix B

Scenario error messages

This appendix contains a collection of error messages from running scenarios
on the Carla simulator. For brevity they are not included in the running text
of the thesis.

B.1 Follow vehicle

B.1.1 Initially enhanced scenario

1 oliverrj@pensie7:~/Documents/master-extern/scenario_runner-0.9.15|master python3.7
scenario_runner.py --scenario FollowLeadingVehicle_1 --reloadWorld --record logs
2 Preparing scenario: FollowLeadingVehicle_1
3 The scenario cannot be loaded
| Traceback (most recent call last):
5 File "scenario_runner.py", line 406, in _load_and_run_scenario
] scenario_class = self._get_scenario_class_or_fail(config.type)
7 File "scenario_runner.py", line 157, in _get_scenario_class_or_fail
8 scenario_module = importlib.import_module (module_name)
) File "/usr/local/lib/python3.7/importlib/__init__.py", line 127, in import_module
10 return _bootstrap._gcd_import(name[level:], package, level)

11 File "<frozen importlib._bootstrap>", line 1006, in _gcd_import

12 File "<frozen importlib._bootstrap>", line 983, in _find_and_load

13 File "<frozen importlib._bootstrap>", line 967, in _find_and_load_unlocked
14 File "<frozen importlib._bootstrap>", line 677, in _load_unlocked

15 File "<frozen importlib._bootstrap_external>", line 728, in exec_module

16 File "<frozen importlib._bootstrap>", line 219, in _call_with_frames_removed

17 File "/home/oliverrj/Documents/master-extern/scenario_runner -0.9.15/srunner/scenarios/
follow_leading_vehicle.py", line 26, in <module>

18 from srunner.scenariomanager.scenarioatomics.atomic_behaviors import (ActorTransformSetter
s

19 ImportError: cannot import name ’PedestrianWalk’ from ’srunner.scenariomanager.scenarioatomics
.atomic_behaviors’ (/home/oliverrj/Documents/master-extern/scenario_runner -0.9.15/
srunner/scenariomanager/scenarioatomics/atomic_behaviors.py)

20 cannot import name ’PedestrianWalk’ from ’srunner.scenariomanager.scenarioatomics.
atomic_behaviors’ (/home/oliverrj/Documents/master -extern/scenario_runner -0.9.15/srunner

/scenariomanager/scenarioatomics/atomic_behaviors.py)
21 No more scenarios .... Exiting

Listing B.1: Error message when running the the initially enhanced
FollowLeadingVehicle scenario with halluciantion.

The scenario that triggered this error is presented in Section 6.1.17?* and
the contents of the LLM enhancement are presented in listing A.1.
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oliverrj@pensie7:~/Documents/master-extern/scenario_runner -0.9.15|master python3.7
scenario_runner.py --scenario FollowLeadingVehicle_1 --reloadWorld --record logs
Preparing scenario: FollowLeadingVehicle_1
The scenario cannot be loaded
Traceback (most recent call last):
File "scenario_runner.py", line 406, in _load_and_run_scenario
scenario_class = self._get_scenario_class_or_fail(config.type)
File "scenario_runner.py", line 157, in _get_scenario_class_or_fail
scenario_module = importlib.import_module (module_name)
File "/usr/local/lib/python3.7/importlib/__init__.py", line 127, in import_module
return _bootstrap._gcd_import(name[level:], package, level)

File "<frozen importlib._bootstrap>", line 1006, in _gcd_import

File "<frozen importlib._bootstrap>", line 983, in _find_and_load

File "<frozen importlib._bootstrap>", line 967, in _find_and_load_unlocked
File "<frozen importlib._bootstrap>", line 677, in _load_unlocked

File "<frozen importlib._bootstrap_external>", line 728, in exec_module

File "<frozen importlib._bootstrap>", line 219, in _call_with_frames_removed
File "/home/oliverrj/Documents/master -extern/scenario_runner -0.9.15/srunner/scenarios/
follow_leading_vehicle.py", line 31, in <module>
from srunner.scenariomanager.scenarioatomics.atomic_behaviors import (ActorTransformSetter

B
ImportError: cannot import name ’WalkToLocation’ from ’srunner.scenariomanager.scenarioatomics
.atomic_behaviors’ (/home/oliverrj/Documents/master-extern/scenario_runner-0.9.15/

srunner/scenariomanager/scenarioatomics/atomic_behaviors.py)

cannot import name ’WalkToLocation’ from ’srunner.scenariomanager.scenarioatomics.
atomic_behaviors’ (/home/oliverrj/Documents/master-extern/scenario_runner -0.9.15/srunner
/scenariomanager/scenarioatomics/atomic_behaviors.py)

No more scenarios .... Exiting

Listing B.2: FError message when running the the strictly enhanced
FollowLeadingVehicle scenario with halluciantion.



Glossary

ADCP . . .. ... ... Autonomous driving comfort prediction
ADS . ... Autonomous driving system

N Artificial intelligence

API . . . ... Application programming interface
CoT . ... . Chain-of-Thought

DSC . ... ... . Driving situation complexity

DSL . ... ... Domain specific language

FOSS .. ... ... Free and open source

GUI . ... ... ... ... ... Graphical user interface

] In-context learning

JIT © .o oo Just-In-Time

K& . . . . Kubernetes

LLM . ... ... ... ..., Large Language Model

MCP . ... ... ... ... ..., Model context protocol

ML ... ... Machine learning

NLP . ... ... Natural language processing

RAG . .. .. ... .. Retrieval augmented generation

2 Reinforcement learning

RPC . . ... ... ..., Remote procedure call

98



	Introduction
	Motivation
	Problem description
	Thesis overview

	Background
	Autonomous driving systems
	ADS simulation
	The concept of driveability

	Testing
	ADS testing
	The complexities of ADS testing
	ADS testing metrics

	Large language models (LLMs)
	Emergent abilities
	Intelligence in LLMs
	Utilising LLMs – Prompt engineering
	General challenges with LLMs
	The different kinds of LLMs

	Existing LLM applications for ADS

	Related work and literature review
	Literature review
	Survey of LLM applications in scenario-based ADS testing
	LLM4AD

	Related work
	ADS scenario generation
	Utilising LLMs on ADS scenarios


	LLM4DD implementation
	Architectural overview
	Component details
	LLM interface and prompt applications – Odin
	Carla interface and scenario utilities – Thor
	Execution tool / user oriented frontend – Loki


	Experiment methodology
	ADS-related aspects
	Scenarios
	Metrics

	LLM-related aspects
	Prompts
	Finding a suitable LLM
	Output of the LLM – general overview
	Hallucinations in the enhanced scenarios


	Results
	Examples of enhanced scenarios
	Base scenario: Follow vehicle
	Base scenario: Accident


	Discussion
	Result analysis
	LLM evaluation
	Table of scenario failures
	Enhanced scenarios: Follow vehicle
	Enhanced scenarios: Accident

	Research question analysis
	RQ1
	RQ2

	Broader discussion
	Scenario modification versus scenario generation
	Realism in the enhanced scenario
	LLM aspects
	Scenario formats
	When is enough – when is the ADS safe?


	Future work
	LLM oriented aspects
	Prompting strategies
	Experimenting with other models
	Fine-tuned model
	Temperature configurations
	Retrieval-augmented generation (RAG)
	Model context protocol (MCP)
	Tool manipulation

	Implementation oriented aspects
	Static analysis of the enhanced scenario
	GUI visualisation
	Other datasets
	More diverse scenarios
	Efficiency
	Domain specific file format
	More stable Carla setup
	More scientific way of evaluating a result

	Repurposing the LLM4DD implementation for other applications

	Conclusion
	References
	Scenario file diffs
	Follow vehicle
	Initial enhancement
	Strictly adhering to the Carla API

	Accident
	Minimal changes
	Optimized for jerk


	Scenario error messages
	Follow vehicle
	Initially enhanced scenario 


	Glossary

